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Abstract
Probability distributions are key components of many learning from demonstration (LfD) approaches. While the
configuration of a manipulator is defined by its joint angles, poses are often best explained within several task spaces. In
many approaches, distributions within relevant task spaces are learned independently and only combined at the control
level. This simplification implies several problems that are addressed in this work. We show that the fusion of models
in different task spaces can be expressed as a product of experts (PoE), where the probabilities of the models are
multiplied and renormalized so that it becomes a proper distribution of joint angles. Multiple experiments are presented
to show that learning the different models jointly in the PoE framework significantly improves the quality of the model.
The proposed approach particularly stands out when the robot has to learn competitive or hierarchical objectives.
Training the model jointly usually relies on contrastive divergence, which requires costly approximations that can affect
performance. We propose an alternative strategy using variational inference and mixture model approximations. In
particular, we show that the proposed approach can be extended to PoE with a nullspace structure (PoENS), where the
model is able to recover tasks that are masked by the resolution of higher-level objectives.
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1 Introduction
Adaptability and ease of programming are key features
necessary for a wider spread of robotics in factories and
everyday assistance. Learning from demonstrations (LfD)
is an approach to address this problem. It aims to develop
algorithms and interfaces such that a non-expert user can
teach the robot new tasks by showing examples. In LfD,
as well as in other robot learning techniques, probability
distributions are a key component of the proposed models.

In this work, we propose a framework to represent and
learn distributions of robot configurations p(q), which can be
used within many LfD models. As the desired configurations
should be adapted to external parameters s, such as position
and orientation of objects, we also address the problem
of learning conditional distributions p(q|s). As acquiring
data by manipulating the robot is often costly, we focus
on problems where only small datasets are provided and in
which generalization capabilities with respect to the external
parameters s are important.

In contrast, many of the current works in machine learning
rely on big datasets. It enables complex distributions to
be learned with little or no prior knowledge about the
structure of the data. Our approach aims to exploit at best the
existing robotic knowledge, while keeping the possibility to
learn more complex distributions. Following Occam’s razor
principle, our approach aims to find simple explanations for
complex distributions. We show that simpler explanations
not only lead to more interpretable models but also increase
the generalization capabilities and reduce the need for data.

In robotics, these explanations often correspond to
transformations providing distributions of simpler shapes.

For example, a Gaussian distribution of the end-effector
might result in a very complex distribution of joint angle
configurations, as shown in Fig. 2. The configuration
q is often not of primary interest; poses in different
task spaces, distances to objects, pointing directions or
bimanual correlations are often more important. Hence,
many approaches in LfD only learn distributions of these
transformed quantities. These distributions are often learned
independently and combined only at the control level. In this
article, we show that this approach has several drawbacks.
First, it is unaware of the kinematic structure of the robot
and of the limited range of values that can be reached
within each task space. It results in a confusion between the
characteristics of the task and the capabilities of the robot.
Secondly, when distributions under several task spaces are
learned independently, the relation between them is ignored.
It then becomes impossible to properly understand each task
and the required precision. Moreover, when some tasks are
prioritized, secondary objectives can only be recovered if the
dependencies between the task spaces are considered. They
are indeed masked by the resolution of the tasks of higher
importance.
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Figure 1. Product of experts can be used to set up virtual guides on robotic manipulators. A user demonstrates kinesthetically
several configurations fulfilling the task objectives (left). In this example, the end-effector of the robot should stay close to a
horizontal plane, while pointing to a desired target. The objectives are then inferred by the robot as target distributions under
several transformations (task spaces). By exploiting the torque control capabilities of recent robots, the different objectives are
tracked. Using an optimal control strategy, feedback gains can be computed according to the precision of the different objectives.
As a resulting behavior, the robot is free to move along directions that are not constrained by the objectives (center ), while
preventing deviations from the objectives (right).

The main contribution of this work is to apply the products
of experts (PoE) approach in Hinton (1999) to robotics.
This approach can combine the interpretability, compactness
and precision of task-space distributions with the kinematic
awareness of the configuration space. Particularly, the main
detailed contributions are:

1. Training PoEs (Section 2) An approach to train PoEs
using variational inference, better suited to the targeted
robotic applications than the original approach from
Hinton (2002).

2. PoE with prioritization (Section 3) A novel
technique that leverages the PoE formulation in
combination with null space operators to learn task
priorities from demonstrations with minimal prior
knowledge compared to the state of the art (e.g.
no need to know task references a priori, recover
secondary masked tasks).

3. New perspectives for PoEs in robotics (Section 4,
5) An extensive formulation of experts describing
various relevant manipulation skills in robotics
(e.g. position/orientation/joint space/manipulability,
movement primitives, ergodic control, prioritization)
whose fusion can be harmoniously learned using our
approach.

4. Experiments (Section 6) A detailed analysis of the
proposed approach, highlighting the capabilities of
learning from few data, as well as the ability to learn
an arbitrary number of prioritized tasks.

Organization of the article The article starts with
an overview of the related work in Section 1. After
presenting the general approaches to learn distributions, we
concentrate on PoE models and their applications. The use of
distributions in robotics and its relation with inverse optimal
control are then discussed.

In Section 2, PoEs are formally presented and the practical
implications of the normalization constant for robotics are
discussed. In the second part of the section, a method to
approximate and train PoEs using variational inference is
proposed.

In Section 3, we propose an extension of PoEs with
nullspace filter (PoENS). Classical nullspace approaches for

inverse kinematic are first presented. Then, this approach is
used to redefine the derivative of the log-likelihood of the
PoE such as to induce a hierarchy.

Several distributions and transformations are presented in
Section 4. They help the practitioner to tackle a wide range
of robotic problems.

In Section 5, two different control strategies compatible
with PoEs are then presented (Fig. 1 illustrates one of them).

Finally, in Section 6, several experiments are presented to
compare the proposed models with other density estimation
techniques.

1.1 Related work
Estimating distributions Estimating probability den-

sity functions have been for long a major field in statistics
and machine learning. Estimating complex densities using a
sum of simpler densities has been proposed with kernels in
Parzen (1962) or mixture models in Dempster et al. (1977).
Unfortunately, these techniques can be very inefficient in
high-dimensional spaces, such as the configuration of a
robot. With the rising popularity of neural networks, deep
generative models have been used to learn distributions of
higher dimensions, such as images. Restricted Boltzmann
machine (Hinton et al. (2006)) and deep Boltzmann machine
Salakhutdinov and Hinton (2009) are popular models. Like
products of experts (PoE), proposed in Hinton (1999), these
models are trained by maximizing an intractable likelihood
function. Several approximations are necessary to compute
the gradient of the log-likelihood.

These complex approximations motivated the develop-
ment of various models that do not represent the likelihood
but allow sampling from the distribution like generative
networks Bengio et al. (2014), generative adversarial nets
(GAN) Goodfellow et al. (2014) and variational autoen-
coders (VAE) Kingma and Welling (2013). Unlike previ-
ous techniques, they do not require approximations when
computing the gradient of the cost to optimize. However,
once the model is trained, computing the likelihood is either
impossible or requires approximations. These generative
machines have been very popular recently and are used
to learn complex, high-dimensional distributions from huge
datasets.
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Figure 2. Product of experts can learn complex distributions of
joint angles as a fusion of simple distributions within several task
spaces. (a) 30 samples of the configuration of a 2-DoF planar
robot are displayed. The end-effector follows an elongated
Gaussian distribution. The distribution in configuration space
has a more complex shape, which it is difficult to represent. (b)
With our approach, we learn configuration-space distributions
as a product of simple densities in different task spaces. It is
thus possible to represent this sharp distribution easily with few
parameters. (c) A standard approach like a Gaussian mixture
model, directly applied in configuration space, needs much
more samples and parameters to represent this distribution.
Following Occam’s razor principle, finding simpler explanations
(fewer parameters of the model) to understand complex dataset
leads to better generalization.

Models with unnormalized likelihood like PoEs are
of interest in robotics for inverse optimal control (IOC)
problems, see e.g., Finn et al. (2016). In Ziebart et al. (2008),
the maximum entropy principle was introduced for IOC as
an intractable density on paths. However, the direct use of
PoEs has been largely overlooked in robotics. Compared
to modern generative models, it might appear at first sight
as a step backward. However, the direct use of PoE has
multiple advantages the will be highlighted in this article.
For the learning process, it enables to use of robotics-
related knowledge to decrease the amount of data required.
Particularly, we show that the computational overhead
induced by the approximation in the gradient is largely
compensated by the advantages of these models in terms of
small datasets requirements. Also, for control applications,
the direct access to the (at least unnormalized) likelihood
is important. Moreover, these computational overheads are
very limited when used with small datasets; most of the
training procedures considered in the experiments in Sec. 6
take between 10 seconds to a minute.

Product of experts Products of experts have been
proposed in Hinton (1999) as an alternative to mixture

models to compensate for their poor efficiency in high-
dimensional space. The combination of the distributions
(called experts) is achieved by a product instead of a
summation, which provides much sharper distributions. If
computing the normalizing constant of a sum of distributions
is straightforward, the major problem with PoEs is to
compute this quantity and its derivative, which requires
approximate methods. Sampling from a PoE is also more
difficult than from a mixture model.

Many works have used the term ”product of experts” to
express the fusion of several models. Many of these are not
considering the joint training of the models as originally
proposed in Hinton (2002). For example, two long short-
term memory (LSTM) models are combined in Johnson et al.
(2017) to generate jazz melodies. In robotics, the fusion
of multiple sources of data (e.g. sensors) was expressed
as a PoE in Pradalier et al. (2003) for the localization of
mobile robots and obstacle avoidance. In Calinon (2016),
the fusion of trajectory models learned independently in
multiple coordinate systems is also referred to as a product
of Gaussians (PoG).

Jointly training the experts, as proposed in Hinton (2002),
has been used in several applications. In robotics, a product
of contact models is proposed in Kopicki et al. (2017)
to predict the motion of manipulated objects. In speech
processing, PoEs have been used for vowel classification
Dixon (2006). In Zen et al. (2012), speech sequences
are modeled using a product of multiple acoustic models.
These acoustic models consist of transformations, both
linear (discrete cosine transform, summation) and non-
linear (quadratic), by using various distributions such as
Gaussian, Gamma or log-Gaussian. The authors claim that
distortions of the generated speech are often due to the
different acoustic models being learned separately and only
combined later, at the synthesis stage. The authors proposed
to use the PoE framework, enabling the training of multiple
acoustic models cooperatively. Our claim is that, for robotics
applications, learning the different models separately and
combining them later, also induce heavy distortions. Many
works learn different models (in configuration space, in
task space, manipulability measures, ...) separately and only
combine them at the control stage. In this article, we show
the advantages of learning these models collaboratively in a
way that the dependencies between the different features are
kept, while taking the kinematic structure of the robot into
account.

Distributions for learning in robotics In Learning
from demonstrations (LfD), as well as in other robot
learning techniques, probability distributions are a key
component of the proposed models. They are often used
to define motions by introducing a dependence to time
Calinon and Billard (2009), as observation models in hidden
Markov models Calinon (2016), or transformed by a time-
dependent basis matrix Paraschos et al. (2017). Most of these
works learn the different models separately and combine
them at the control stage. In Calinon and Billard (2009),
objectives from multiple task spaces and configuration
space are considered. Multiple time-dependent Gaussian
distributions of end-effector positions and joint angles are
learned separately, with an assumption of independence.
These competing objectives are only combined at the
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control stage, by exploiting a product of Gaussians in
the velocity space. In Calinon (2016), multiple Gaussian
models of motion are learned independently within different
task spaces. Using properties of linear transformations and
product of Gaussians, the different models are combined
in closed-form before synthesizing sequences. In Zeestraten
et al. (2017), this approach is extended to also encode
orientation in multiple coordinate systems. In Paraschos
et al. (2017), the authors propose a combination of multiple
Gaussian distributions of trajectories (ProMP). The different
models are also defined both in configuration space and in
different task spaces, again learned separately. They are then
combined at the control level as acceleration commands.

Similarly, in Silvério et al. (2018), we proposed to fuse
multiple independent Gaussian models in different task
spaces and configuration space as a product of Gaussians.
The fusion is approximated locally using a linearization
of the forward kinematics. We also proposed to learn
a hierarchy of tasks using linear transformations with
nullspace filters. That approach is limited to velocity
commands and tasks where the target is known. The
approach that we now propose can cope with static
configurations samples, which requires more advanced tools
to take into account the non-linearities. The different tasks
do not need to be known beforehand and our method can
uncover secondary tasks that are masked by primary ones.
The secondary tasks can also be discovered in Towell et al.
(2010) and Lin et al. (2015). However, one needs to know
the control variables during the demonstrations, which are
not always easily accessible. In our approach we can rely on
static configurations solely.

In Niekum et al. (2015), segments of trajectories are
analyzed in different coordinate systems, in a similar fashion
to Calinon (2016). A unique coordinate system is then
selected for each segment, by looking at the similarity
between end-points. This idea of selecting relevant task
spaces is explored in several other works. In Mühlig et al.
(2009), the demonstrations are projected in a set of task
spaces. Different criteria, such as the variance of the
data and the attention of the demonstrator, are used. In
Lober et al. (2015), the variance of several distributions
learned separately is mapped to weights modulating the task
prioritization, where the variances are learned from several
demonstrations.

A common point of these works is that the different
models are learned independently and their prioritization or
importance is related to their variance. Indeed, secondary
tasks do exhibit a higher variance but the experiments of
this article will show the necessity to distinguish between the
variance and the prioritization. Indeed, we will demonstrate
that competing tasks can be understood only if the models are
trained jointly, especially to understand the characteristics of
secondary tasks.

Outside the field of LfD, learning distributions of robot
configurations is also a topic of interest for sampling-based
path planning Amato and Wu (1996). Sampling-based path
planning methods require to sample valid configurations (e.g.
collision-free) to connect them and create paths. Randomly
sampling the configuration space and keeping valid samples
is not efficient because of a possible low acceptance rate.
Some works focus on learning the distribution to sample

from. In Ichter et al. (2018), conditional distributions are
learned using a conditional variational autoencoder Sohn
et al. (2015). The distribution is conditioned on some
external factors to provide adaptation, such as obstacles
occupancy grids. In Lehner and Albu-Schäffer (2017), the
authors use a similar approach with Gaussian mixture models
learned from previous collision-free configurations.

Inverse optimal control Our approach shares similar-
ities with inverse reinforcement learning (IRL) or inverse
optimal control (IOC) Ng and Russell (2000). In these
approaches, the robot is trying to infer the cost function
shown by the expert demonstrator. Maximum entropy inverse
reinforcement learning has been proposed in Ziebart et al.
(2008). It frames the problem as a maximum likelihood
estimation of an intractable (unnormalized) density over
trajectories τ

p(τ ) ∝ exp
(
− cθ(τ )

)
. (1)

Our approach can be interpreted as inferring a cost that is
minimized by inverse kinematics. In our case, the multiple
costs in the different task spaces are defined by the log-
likelihood of expert distributions. Instead of “PoE”, our work
could also have been called “inverse inverse kinematics”.

Learning cost functions for inverse kinematics was already
discussed in Kalakrishnan et al. (2013). However, their
approach is limited to learning a weight vector of different
cost features (joint limits, manipulability measure, elbow
position). In Jetchev and Toussaint (2011), the cost is learned
on a feature vector of the proposed task space. Sparsity is
ensured using `1 regularization which allows retrieving and
selecting important task spaces. These two latter approaches
formulate the problem as inferring a cost that acts on
different task spaces. The relation between the different task
spaces and the dependencies between the different tasks are
better taken into account than in the probabilistic models
presented in the previous paragraph.

In Finn et al. (2016), a more expressive cost function is
considered by using neural networks. While our approach
considers simpler static tasks, we propose more complex
approximations and a hierarchical structure. With a more
structured and interpretable cost, our approach also targets
smaller datasets.

2 Product of Experts
Products of experts, proposed in Hinton (1999), are models
in which several densities pm (which are called experts)
are multiplied together and the product renormalized. Each
expert can be defined on a different view or transformation
of the data Tm(q), and the resulting density expressed as

p(q|θ1, ... ,θM ) =

∏
m pm(Tm(q) |θm)∫

z

∏
m pm(Tm(z) |θm)

. (2)

For compactness, we will later refer to the unnormalized
product as

p̃(q) =
∏
m

pm(Tm(q) |θm), (3)

where we drop the parameters of the experts θ1, ... ,θM
in the notation. In this work, the transformations Tm(q)
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correspond to different task spaces. They can either be given,
such as the forward kinematics of a known manipulator, or
parametrized (subject to estimation). Several transformations
that can be used in robotic problems are presented in Sec. 4.1.

As an example, q can be the configuration of a humanoid
(joint angles and a floating base 6-DoF transformation).
The different transformations can consist of the forward
kinematics of several links, like the feet and the hands. The
densities of the corresponding experts can be multivariate
Gaussian distributions, defining where these links should be
located.

This way of combining distributions is very different from
more traditional mixture models. In mixture models, each
distribution is in configuration space, which can be of high
dimensions (> 30) for humanoids. Many components and a
laborious tuning are necessary to cover this space. Often, the
distribution is also very sharp, creating a low-dimensional
manifold in a higher-dimensional space, as illustrated in
Fig. 2. These sharp distributions are hard to be represented
with mixtures, even in low-dimensional spaces. In PoEs,
each expert can constrain a subset of the dimensions or
a particular transformation of the configuration space. The
product is the intersection of all these constraints, which
can be very sharp. It has far fewer parameters to train
than a mixture. A PoE density is also smoother than a
mixture, which is by definition multimodal. This feature is
particularly beneficial for applications in control, as it will
be presented in Sec. 5. Moreover, if the model needs to
encode time-varying configurations, it can easily be extended
to a mixture of PoEs. Great flexibility is then allowed to set
up such model; some experts can be shared among mixture
components to encode global constraints (preferred posture,
static equilibrium), while some others can have different
parameters for each mixture component.

2.1 Importance and implications of the
normalization constant

The renormalization is an important aspect that distinguishes
this approach from the ones in which the models are learned
independently. In these approaches, the recorded data is first
transformed into the quantities of interest Tm(q), or directly
recorded in this form. Then, either the different quantities
are stacked to learn one model, or different models on the
different quantities are trained separately. In the latter case,
the models are combined at the control level. This approach
corresponds to a PoE in which the normalization constant
has been dropped. The renormalization might seem to be
a mathematical preoccupation, but it has several practical
implications.

• Renormalizing the product allows some experts to
give constant probabilities to all configurations. If
the normalization was done experts-wise, this would
imply close to zero probability everywhere, and
result in a very low likelihood. Experts which do
not influence the product can be dropped without
penalizing the overall likelihood. Hence, explaining
the data with sparse models (a small number
of experts) is possible. It often leads to better
generalization. In Sec. 6.1, an experiment is presented

in which the model should distinguish between a
configuration-space or a task-space target distribution.

• When using a mixture of PoEs, as in Calinon (2016),
not considering the renormalization further reduces
generalizations capabilities. It prevents mixture com-
ponents to identify patterns appearing only in a subset
of the task spaces, which would have been sufficient
to explain the full configuration. Instead, the mixture
components are allocated such that the representa-
tion is compact under each transformation, preventing
good generalization capability.

• The proper support (set of possible values that Tm(q)
can take) of each expert distribution is taken into
account. Renormalizing on q makes sure that the
support considered by each expert is defined by the
set of possible configurations and its transformation in
the different task spaces. For example, let us consider
an expert as a non-degenerate multivariate Gaussian
defining the position of the end-effector of a fixed
manipulator. The support of a Gaussian is normally
R3. By using a PoE, which takes into account q and the
forward kinematics transformation, the support turns
into the actual workspace of the robot.

When training the model, it means that the high
probability regions of each expert are not necessary
where the data is. With a proper support, the model is
trained such that the transformed data is in a region of
higher probability than the remaining values that it can
take. Practically, it means that the model can clearly
distinguish between the targeted task, represented by
the PoE, and the kinematic capability of the robot.
The importance of the support is best noticed when
transferring models between robots with different
kinematic chains, or when tasks should be understood
even if their realization is prevented by kinematic
constraints.

• The realization of tasks is sometimes prevented
by complementary or competitive objectives. In
Sec. 3, an extension to PoE is presented to
admit strict hierarchies between the tasks. As with
kinematic constraints, considering the proper support
and renormalization allows recovering the masked
tasks. This possibility will be illustrated by several
experiments in Sec. 6.2, also shown in Fig. 12.

• The use of unnormalized expert densities is enabled.
Especially for orientation statistics, some interesting
distributions have intractable normalizing constant,
which sometimes dissuade their use. In a PoE, these
distributions can be used with no overhead, as the
normalization only occurs at the level of the product.
Also, the normalization constant is typically easier to
compute on joint angles than on orientation manifolds.
An experiment is presented in Sec. 6.4 in which a
joint distribution of positions and rotation matrices is
learned.

When the experts are learned independently, nothing ensures
that the PoE matches the data distribution. It only becomes
similar in some particular cases. For example, when the
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demonstrated data has an important variance under all-
but-one transformations. Moreover, no kinematic constraint
should prevent the resolution of the task (e.g., a task-
space target distribution with all its mass inside the robot
workspace).

2.2 Estimating PoE
2.2.1 Markov Chain Monte Carlo (MCMC) In the general
case, the renormalized product p(q) has no closed-form
expression. A notable exception is Gaussian experts with
linear transformations. In this case, the product p(q) is
Gaussian. Many techniques such as Kalman filtering or
linear quadratic tracking (LQT) can be reformulated as a
product of Gaussians under linear transformations. In our
case, this is of limited interest, due to the nonlinearities of
the transformations we are considering.

Approximation methods are required to work with PoEs.
An adequate approximation method should enable several
elements: we should be able to draw samples from
it, to estimate the normalizing constant, to estimate its
gradient with respect to the model parameters, and to
identify the modes of the distribution. Such methods are
found in Bayesian statistics, where the same problem of
approximating an unnormalized density occurs. Indeed,
in Bayesian statistics, the posterior distribution of model
parameters θ can be viewed as a product of two experts: a
likelihood and a prior.

Markov chain Monte Carlo (MCMC), see Andrieu et al.
(2003) for an introduction, is a class of methods to
approximate p(q) with samples. If MCMC methods can
represent arbitrarily complex distributions, they suffer from
some limitations.

For example, they are known not to scale well to high-
dimensional spaces, which is particularly constraining for
our application. A lot of samples are required to cover
high-dimensional distributions. The key component of many
MCMC methods is the definition of a proposal move, which
makes the random walker (chain) more likely to visit areas
of high probabilities. The design of this proposal move is
algorithmically restrictive, because it needs to ensure that the
distribution of samples at equilibrium is proportional to the
unnormalized density. Furthermore, it is difficult to obtain
good acceptance rates in high dimension, especially with
very correlated p̃(q), as shown in Fig. 2.

By representing the distribution only through samples,
it is also difficult to assess if this latter is well covered.
A huge part of the space and distant modes might remain
undiscovered. It is also difficult to know the granularity of
the approximated distribution.

Except for some particular approaches, such as Chen
et al. (2014), MCMC methods require an exact evaluation
of p̃(q). In contrast, stochastic variational inference (SVI)
only requires a stochastic estimate of the gradient of
log p̃(q). There are many advantages to this unconstraining
requirement. Experts transformations that are too costly
to compute exactly can be approximated. If the PoE is
conditional, batches of conditional values can be used. Also,
the gradient can be redefined such as a hierarchy between the
task can be set up, as will be presented in Sec. 3.

Finally, MCMC methods struggle with multimodal
distributions. Chains are unlikely to cross big regions of

small density. If multiple chains are run in parallel, the
respective mass of each mode is difficult to assess. A
proper approach of this problem is to design particular
proposal steps to move between distant modes, as proposed
in Sminchisescu et al. (2003), which is algorithmically
restrictive.

2.2.2 Variational inference Variational inference (VI)
(Wainwright and Jordan (2008)) is another popular class
of methods that recasts the approximation problem as an
optimization. VI approximates the target density p̃(q) with a
tractable density q̃(q;λ) called the variational density. λ are
the variational parameters and are subject to optimization.
A density is called tractable if drawing samples from it
is easy and that the density is properly normalized. VI
tries to minimize the intractable KL-divergence between the
renormalized density p(q) and the variational density q̃(q;λ)

DKL(q̃||p) =

∫
q

q̃(q;λ) log
q̃(q;λ)

p(q)
dq. (4)

Given that p(q) = p̃(q)/C where C is the normalizing
constant, we can rewrite the previous divergence as

DKL(q̃||p) =

∫
q

q̃(q;λ) log
q̃(q;λ)

p̃(q)
dq + log C, (5)

which can be evaluated up to a constant and minimized. The
first term is the negative evidence lower bound (ELBO). This
term can be estimated by sampling as

L(λ) =

∫
q

q̃(q;λ) log
q̃(q;λ)

p̃(q)
dq (6)

= Eq̃[log q̃(q;λ)− log p̃(q)] (7)

≈ 1

N

N∑
n=1

(
log q̃(q(n);λ)− log p̃(q(n))

)
, (8)

with q(n) ∼ q̃( · |λ).

The reparametrization trick proposed in Salimans and
Knowles (2013) and Ranganath et al. (2014) allows a
noisy estimate of the gradient L(λ) to be computed. It is
compatible with stochastic gradient optimization like Adam
Kingma and Ba (2015). For example, if q̃ is Gaussian,
this is done by sampling η(n) ∼ N (0, I) and applying the
continuous transformation q(n) = µ+Lη(n), where Σ =
LL> is the covariance matrix. L and µ are the variational
parameters λ. More complex mappings as normalizing flows
can be used as in Rezende and Mohamed (2015).

Zero forcing properties of minimizing DKL(q||p) It is
important to note that due to the objective DKL(q̃||p), q̃ is
said to be zero forcing. If q̃ is not expressive enough to
approximate p̃, it would miss some mass of p̃ rather than
giving a high probability to locations where there is no mass
(see Fig. 3 for an illustration).

Mixture model variational distribution For computational
efficiency, the variational density q̃(q;λ) is often chosen as
a factorized distribution, using the mean-field approximation
(Wainwright and Jordan (2008)). Correlated distributions
can be approximated by a Gaussian distribution with full
covariance as in Opper and Archambeau (2009). These
approaches fail to capture the multimodality and arbitrary
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Figure 3. The product of experts is an unnormalized density.
As in Fig. 2, the density shown in (a) results from an elongated
Gaussian defined on the end-effector of a 2-DoF planar robot.
For control applications, such as keeping the robot in this
distribution, accessing the unnormalized density is sufficient.
For other applications, such as training a PoE, sampling from
this distribution, evaluating the normalizing constant and its
gradient might be needed. Using variational inference, the PoE
can be approximated by a tractable distribution, as a mixture of
banana-shaped distributions (b) or Gaussians (c). On purpose,
only 5 mixture components were used in the illustrations. A
more precise approximation can be achieved with a higher
number.

complexity of p̃(q). The idea to use a mixture for greater
expressiveness as approximate distribution was initially
proposed in Bishop et al. (1998), with a recent renewal of
popularity Miller et al. (2017); Guo et al. (2016); Arenz et al.
(2018).

A mixture model is built by summing the probability ofK
mixture components

q̃(q|λ) =

K∑
k=1

πk q̃k(q|λk),

K∑
k=1

πk = 1, (9)

where πk is the total mass of component k. The components
q̃k can be of any family accepting a continuous and invertible
mapping between λ and the samples. The discrete sampling
of the mixture components according to πk has no such
mapping. Instead, the variational objective can be rewritten
as

L(λ) = Eq̃[log q̃(q;λ)− log p̃(q)] (10)

=

K∑
k=1

πkEq̃k [log q̃(q;λ)− log p̃(q)], (11)

meaning that we need to compute and get the derivatives
of expectations only under each component distribution
q̃k(q|λk).

2.3 Training PoEs
From a given dataset of robot configurations Q, maximum
likelihood (or maximum a posteriori) of the intractable
distribution p(q|θ1, ... ,θM ) should be computed.

It can be done using gradient descent, as proposed in
Hinton (1999). The derivative of the log-likelihood of the
PoE can be separated into the derivative of the unnormalized

expert and the normalizing constant

∂ log p(q|θ1, ... ,θM )

∂θm
=
∂ log pm(q|θm)

∂θm
−

∂ log C(θ1, ... ,θM )

∂θm
.

(12)

The derivative of the normalizing constant is intractable and
requires approximation methods. It can be written as

∂ log C(θ1, ... ,θM )

∂θm
=∫

c

p(c|θ1, ... ,θM )
∂ log pm(c|θm)

∂θm
dc,

(13)

which is the expected derivative of the unnormalized expert
log-likelihood under the current PoE distribution. The
averaged derivatives over the dataset Q and with respect
to the parameters of all experts θ =

[
θ>
1 , ... ,θ

>
M

]>
can be

written as〈∂ log p(q)

∂θ

〉
Q

=
〈∂ log p̃(q)

∂θ

〉
Q
−
〈∂ log p̃(q)

∂θ

〉
p(q)

,

(14)

where< · >p(·) denotes the expectation over the distribution
p. Intuitively, it means that we compare the expected
gradient of the unnormalized density over the dataset Q
with the expected gradient over the current density p(q).
At convergence, the expected difference should be zero; it
means that the distribution of the PoE p(q) matches the data
distribution Q. Maximizing the log-likelihood of the data is
also equivalent to minimizing the KL divergence between the
data distribution and the equilibrium distribution.

In all but a few cases, the expectation under the current
PoE density has no closed-form. Worse, estimating this
integral with samples is not trivial since drawing samples
from the current PoE is difficult. In Hinton (2002), it is
proposed to use a few sampling steps initialized at the
data distribution Q. These chains have not reached their
equilibrium distribution (the PoE) but can still provide
a biased estimation of the gradient. Unfortunately, this
approach fails when p(q|θ1, ... ,θM ) has multiple modes.
The few sampling steps never jump between modes,
resulting in the incapacity of estimating their relative mass.
Wormholes have been proposed as a solution in Welling et al.
(2004), but are algorithmically restrictive.

As an alternative, we propose to use VI with the proposed
mixture distribution to approximate p(q). Throughout the
training process, this approximation is kept updated to
be able to draw samples from the PoE. The process
thus alternates between minimizing DKL(q̃||p) with current
p and using current q̃ to compute the gradient (12).
The approximate distribution q̃ can either be used as an
importance sampling distribution or directly (if expressive
enough to represent p). The expected gradient over the
current density p(q) becomes

〈∂ log p̃(q)

∂θ

〉
p(q)
≈

N∑
n=1

wn
∂ log p̃(q(n))

∂θ
/

N∑
n=1

wn (15)

with q(n) ∼ q̃( . |λ) and wn =
p̃(q(n))

q̃(q(n)|λ)
(16)
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where wn are the importance weights.
It is also possible to estimate this expectation by using a

mixture of samples from the variational distribution q and
from Markov chains initialized on the data. It combines
the advantages of the two methods. Samples from q are
necessary to estimate the relative mass of distant modes,
while the few steps of the Markov chain reduce the variance
of the derivative. Empirically, we noticed that they tend to
stabilize the learning procedure.

In the derivation, only the experts parameters θ =[
θ>
1 , ... ,θ

>
M

]>
were trained. It is also possible to train the

parameters of their associated transformation without any
modification to the procedure.

Initializing PoEs As the training procedure is iterative,
a good initialization of θm speeds up the learning
process. For the experts with simple forms of maximum
likelihood estimation (MLE) and known transformation
T m, we propose independent initializations with maximum
likelihood. As detailed in the related work, many works in
robotics train the model independently. Thus, we propose to
initialize the PoE that way and improve it by considering the
proper renormalization.

3 Product of Experts with nullspace filter
(PoENS)

We often encounter tasks where some objectives are more
important than others. The problem of controlling a robot
when the different objectives and their hierarchy are known
has already been addressed in several works, see e.g.
Nakamura et al. (1987). It is usually done by filtering
commands minimizing secondary objectives with nullspace
projection operators. It ensures that these commands stay
within the subspace of commands minimizing higher level
objectives.

In our work, considering a hierarchy has an additional
interest. The realization of some subtasks might be prevented
and masked by the resolution of higher-level subtasks. Thus,
it is not trivial to identify secondary objectives in the dataset.
Ignoring their lower priority when training the model will
lead to problems (at best, minimizing their importance, and
at worst, completely missing them). These tasks can be
understood only by considering their lower priority and their
entanglement with higher priority subtasks. To this end, we
propose to extend the PoE framework to the use of nullspace
filters.

Illustratively, the idea is to define a hierarchy between
the experts such that secondary experts can express their
opinions only in subspaces that primary experts do not care
about. For example, let us consider that q ∈ R7 are the joint
angles of a 7-DoF manipulator and p1(T1(q)) is a Gaussian
distribution of the end-effector position. The system has still
4 DoFs in which secondary experts can express their opinion.

Our approach consists of redefining the derivative of the
log-likelihood of the PoE with a nullspace filter. This filter
cancels the derivative of secondary experts in the space of
primary experts, making sure that secondary experts have no
power in the area of expertise of primary experts. Each expert
acts on a transformation of the configuration q

ym = Tm(q), (17)

Figure 4. Densities and derivatives of a two-expert problem. A
2-DoF planar robot is considered as in Fig. 2. The first expert is
an elongated Gaussian distribution on its end-effector. The
second expert acts in joint angles and defines a preferred
configuration. (a) The density of the expert log p1(T1(q)|θ1) is
shown as a colormap. The derivative ∂ log p(y|θ1)/∂y J1(q) is
displayed as streamlines. (b) The same is done with the second
objective in configuration space. (c) The derivative of the second
experts is this time filtered as ∂ log p(y|θ2)/∂y J2(q)N1(q).

and have the differential relationship

ẏm = Jm(q) q̇, (18)

where Jm(q) =
∂Tm(q)
∂q is the Jacobian matrix of the

transformation Tm. When computing inverse kinematics
with a priority, as in Nakamura et al. (1987), the general
solution of (18) is

q̇ = J†m(q) ẏm +
(
I − J†m(q)Jm(q)

)
z, (19)

where J†m is the pseudoinverse of Jm and z is an arbitrary
vector. The nullspace filter Nm(q) = I − J†m(q)Jm(q)
makes sure that the arbitrary vector has no effect in the
transformation Tm as

Jm(q)
(
I − J†m(q)Jm(q)

)
z =

(
Jm(q)− Jm(q)

)
z = 0.

By applying the chain rule, the derivative of the log-
likelihood with respect to the configuration q becomes

∂ log p̃(q|θ1, ... ,θM )

∂q
=
∑
m

∂ log p(Tm(q)|θm)

∂q

=
∑
m

∂ log p(y|θm)

∂y
Jm(q). (20)

The nullspace filter Nm(q) is used to filter the derivative
coming from other experts such that they do not affect the
space where the expert m is acting. For example, if we have
two experts, with expert m = 1 the primary the derivative
becomes

∂ log p(Tm(q)|θ1,θ2)

∂q
=

∂ log p(y|θ1)

∂y
J1(q) +

∂ log p(y|θ2)

∂y
J2(q)N1(q). (21)

Fig. 4 provides an example where the terms of this
derivative are displayed with and without the nullspace
filter for the secondary objectives. We note that when using
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Figure 5. 5-DoF bimanual planar robot with two forward
kinematics objectives. Variational inference is used to generate
the displayed samples. (a) The two tasks are compatible and
the distribution of solution is approximated. (b) No nullspace,
the two tasks are of the same importance. (c) The gradient of
the objective of the orange arm is projected onto the nullspace
of the Jacobian of the forward kinematics of the blue arm. This
is achieved with stochastic variational inference that only
requires to evaluate the gradient of the unnormalized density.

automatic differentiation libraries such as TensorFlow Abadi
et al. (2016), gradients can be easily redefined with this filter.

While in standard PoEs, it was possible to evaluate the
unnormalized log-likelihood, the PoENS is defined only by
the gradient of this quantity. It is thus not possible to evaluate
the unnormalized log-likelihood p̃. It constrains the class of
methods to approximate the density. Stochastic variational
inference can be employed, as it only requires stochastic
evaluation of the gradient. This characteristic is shared with
only a very few Monte Carlo methods such as Chen et al.
(2014). In this mini-batch variant of Hamiltonian Monte
Carlo method Duane et al. (1987), no corrective Metropolis-
Hastings steps are used as they are too costly.

Fig. 5 shows a 5-DoF bimanual planar robot with
two forward kinematics objectives. When the tasks are
compatible, the filtering does not affect the solutions. The
gradient of the objective of the orange arm can be projected
onto the nullspace of the Jacobian of the forward kinematics
of the blue arm, resulting in a prioritization.

4 Useful distributions and transformations
for robotics

In this section, several transformations T m and experts
models pm related to common robotic problems are
presented with a practitioner perspective. This can be used as
a toolkit to unify various problems into the PoE framework.

4.1 Transformations
Several common transformations are presented. These
transformations can be known and fixed, as the forward
kinematics of the end-effector. They can also be partially
known, for example the position of an object held by the
known end-effector, which constitutes a new end-effector.
Fully unknown transformations can also be learned with
neural networks.

Forward kinematics (FK) One of the most common
transformations used in robotics is forward kinematics,
computing poses (position and orientation) of links given the
robot configuration q. Forward kinematics can be computed
in several task spaces associated with objects of interest,
as in Calinon (2016); Niekum et al. (2015); Mühlig et al.
(2009). In these works, analyzing movements from several
coordinate systems allows for generalizations with respect

to movements of their associated objects. These works only
consider cases where the transformation is fully known. The
approaches in these works, based on separately transforming
the data and learning the models, are not compatible with
partially known transformations, as opposed to ours. In
particular, two types of unknowns can be considered with
PoE: unknown coordinate systems or free parameters in the
kinematic chain. These two cases will be considered in the
experiments of Sec. 6.3.

In the first case, the robot could, for example, have to
track an object that can move. We could have a dataset
split into several subparts in which the pose of this object
is constant. The unknown displacement of the objects can
be subject to optimization, as well as the parameters of
the distribution representing the target within its associated
coordinate system.

The second case can occur if a new end-effector is added.
For example, it can be a tool grasped by the robot, whose
position is given by

Tm(q) = FR(q)d+ Fx(q), (22)

where Fx(q) and FR(q) are respectively the position
and rotation matrix of the known end-effector, and d the
displacement of the tool. The parameters d can be optimized
as well when training the PoE with maximum likelihood.
The results is that a new end-effector is found with which
the distribution of configurations q is best explained and
compact.

Manipulability Measures of manipulability are other
interesting transformations in robotics. The most simple
form is a scalar defined as

Tm(q) =
√

det(J(q)J(q)>), (23)

which can be used to explain the avoidance of singular
configurations in the dataset, as in Kalakrishnan et al. (2013).

For a more precise description of the configuration,
velocity and force ellipsoids can be used Yoshikawa (1985).
The velocity ellipsoid is defined by the matrix

Tm(q) =
(
J(q)J(q)>

)−1
, (24)

and the force by its inverse. If we consider a zero-centered
and unit-covariance Gaussian distribution of joint velocity,
the velocity ellipsoid corresponds to the precision matrix
(inverse of the covariance) of the task-space velocities. It thus
relates to the feasible distribution of task-space velocities
(respectively forces). For example, this full matrix can be
used to define the distribution of configurations in which the
transfer of velocities or forces along a direction should be
maximized.

Such matrix is positive semi-definite, which should be
taken into account for the choice of the associated expert
distribution. An option is to work with its Cholesky
decomposition. A Wishart distribution is not expressive
enough to define variances along different directions. In
Jaquier et al. (2020), it is proposed to use Gaussian
distributions in the tangent space of manifolds. This
choice is motivated by the geometry of symmetric positive
definite matrices (SPD). However, this approach ignores the
geometry of the robot (the manipulability is a function of
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the joint angles and the kinematic structure). This comes
with two important limitations. First, the proper support of
the manipulability ellipsoid is ignored. By considering a
distribution on the SPD manifold, it is assumed that this
space can be covered by the robot, while the robot might only
cover a subspace of it (which can also vary among robots).
A second limitation is that manipulability is often employed
as secondary objective. For example, when playing golf,
hitting the ball at the right place is of higher importance than
replicating a desired manipulability ellipsoid. The subspace
of SPD matrices is further limited when it lies in the
nullspace of more important tasks. A simple experiment with
a manipulability measure will be presented in Sec. 6.2 to
show that this should be considered to learn the targeted
manipulability.

Similarly, such consideration is important to transfer
manipulability objectives between robots with different
kinematic chains. In Jaquier et al. (2020), manipulability
ellipsoid distributions are expressed on the set of symmetric
positive definite matrices. We will show in the experiments
of Sec. 6.2 that manipulability-related tasks would be
better transferred by considering that the distributions are
expressed on subsets of these matrices. These experiments
will motivate that a better support of the distributions can
be considered by taking into account the differences in the
kinematic chain configurations.

Relative distances A relative distance space is pro-
posed in Yang et al. (2015). It computes the distances
from multiple virtual points on the robot to other objects
of interest (targets, obstacles). It can, for example, be used
in environments with obstacles, providing an alternative or
complementing standard forward kinematics.

Center of Mass (CoM) From the forward kinematics
of the center of mass of each link and their mass, it is
possible to compute the center of mass (CoM) of the robot.
When considering mobile or legged robots, the CoM should
typically be located on top of support polygons to satisfy
static equilibrium on flat surfaces.

Jacobian pseudoinverse iterations The following
transformation is more interesting for the problem of
sampling configurations from a given PoE than for the one
of maximum likelihood from a dataset. Precise kinematics
constraints imply a very correlated p̃(q), as shown in Fig. 2.
In the extreme case of hard kinematics constraints, the
solutions are on a low dimensional manifold embedded in
configuration space. With most of the existing methods, it
is very difficult to sample from this correlated PoE and to
approximate it. Dedicated methods address the problem of
representing a manifold as Voss et al. (2017) or sampling
from it, as Zhang et al. (2013). In Berenson et al. (2011), a
projection strategy is proposed. Configurations are sampled
randomly and projected back using an iterative process. We
propose a similar approach where the projection operator
PN would be used as transformation T m. Inverse kinematics
problems are typically solved iteratively with

P(q) = q + J(q)†
(
p̂− F (q)

)
, (25)

where p̂ is the target and J(q)† is the Moore-Penrose
pseudo-inverse of the Jacobian. This relation is derivable and

can be applied recursively with

P0(q) = P(q), (26)

Pn+1(q) = P
(
Pn−1(q)

)
. (27)

Then, the distribution

pm(q) ∝ N
(
PN (q)

∣∣∣ p̂, σI) (28)

is the distribution of configurations which converges in N
steps to N (p̂, σI). Thanks to the very good convergence of
the iterative process (25), σ can be set very small. However,
this approach has a similar (but less critical) problem as in
Berenson et al. (2011). The resulting distribution is slightly
biased toward regions where the forward kinematics is close
to linear (constant Jacobian), which are those where more
mass converges to the manifold.

With high DoFs robots, it might be computationally
expensive to run iteration steps inside the stochastic gradient
optimization and propagate the gradient. Another approach
would be to define heuristically (or learn) Σh such that
N (q| p̂, σI + Σh) is close to N (PN (q)| p̂, σI).

Neural network When more data are available, more
general and complex transformations can be considered,
such as neural networks. For example, it can be used to define
a complex distribution in which the end-effector should be.
Coupled with a control strategy (see Sec.5), it can provide
virtual guides as in Raiola et al. (2015) to constraint the robot
on a trajectory or within a shape, as illustrated in Fig. 6.

Particularly, we recommend using invertible neural
networks for practical reasons of initializing the training
procedure and for its interesting properties of global
maximum when controlling the robot. Training a PoE with
contrastive divergence is not as efficient as training models
with tractable likelihood. Therefore, we propose to initialize
the PoE by training all the experts that have tractable
likelihood independently. Thus, we propose to treat an
expert composed of a neural network transformation as
a distribution with a change of variable. This provides a
tractable likelihood as in Dinh et al. (2017), that can be
used for initializing. Given that Tm is bijective, the tractable
likelihood is given by the change of variable

p(q) = pm
(
Tm(q)

) ∣∣∣ det
(∂Tm(q)

∂q>

)∣∣∣, (29)

where pm is a simple distribution. pm can be chosen as a
zero-centered and unit covariance Gaussian. Actually, a full
covariance Gaussian can be described in this framework with
Tm being a linear transformation. If we were to train the
neural network without considering the renormalization, Tm
will try to push all the configuration of the dataset to the
mode of pm. The term

∣∣ det
(
∂Tm(q)/∂q>

)∣∣ can be seen as
a cost preventing the contraction around the mode.

To avoid overfitting, we propose a strategy to penalize
abrupt change in the transformation T −1m . We propose to
minimize the expectation of a measure of local change of the
Jacobian of the inverse of the transformation ∂T −1m under a
distribution pr

Epr(y)

[∫
r

∣∣∣∂T −1m (y)

∂y>
− ∂T −1m (y + αw)

∂(y + αw)>

∣∣∣ dw], (30)

Prepared using sagej.cls



Pignat et al. 11

Figure 6. For greater expressiveness, an invertible neural
network can be used as an expert transformation Tm. Instead of
optimizing the parameters of the expert density pm, which can
be set as a zero-centered and unit covariance Gaussian (right),
the parameters of the network can be trained. The neural
network becomes a transformation under which the dataset (N
shape, left) becomes a simple distribution (Gaussian, right).
The densities are shown as a colormap with isolines. A grid that
undergoes the inverse transformation is also shown. This
approach allows complex attractors or guiding distributions to
be learned, where it is easy to control the robot in the
transformed space.

where w is a unit vector on Snm , nm being the
dimensionality of y, and α a small positive scalar. The
distribution pr can be chosen as a pm but with up to 3
to 10 times bigger standard deviations, which would make
sure that the transformation is smooth even further from the
dataset. This cost can be optimized with stochastic gradient
descent by evaluating the derivative on samples of y(n) ∼
pr(·) and of unit vectors w(n).

Another interesting property of using an invertible
network is that the density under the transformation keeps a
unique global maximum if the expert density pm has only
one. It is justified because invex functions (functions that
have only one global minimum and no local minimum)
are still invex under a diffeomorphism Pini (1991). It is
especially advantageous when we want to control the robot
to track the density of the PoE, as explained in Sec. 5.

4.2 Distributions
Several common distributions are now presented to handle
the transformations presented in the above.

Multivariate normal distribution (MVN) An obvious
choice for forward kinematics objectives is the Gaussian or
multivariate normal distribution (MVN). Its log-likelihood
is quadratic, making it compatible with standard inverse
kinematics and optimal control techniques,

N (q|µ,Σ) ∝ exp
(
− 1

2
(q − µ)>Σ−1(q − µ)

)
, (31)

where µ is the location parameter and Σ is the covariance
matrix. This distribution is standard in robotics to represent
full trajectories Paraschos et al. (2013), subparts of
trajectories with a hidden Markov model Calinon (2016) or
a joint distribution of a phase and robot variables with a
mixture Calinon and Billard (2009).

Matrix Bingham—von Mises—Fisher distributions
(BMF) To handle orientations, for example, represented
as a rotation matrix, Matrix Bingham—von Mises—Fisher

distribution (BMF) Khatri and Mardia (1977) can be
used. Its normalizing constant is intractable and requires
approximation Kume et al. (2013). In our case, this is not
a problem since we integrate over robot configurations. Its
density

pBMF(Q|A,B,C) ∝ exp
(

tr(C>Q+BQ>AQ)
)
,

(32)
has a linear and a quadratic term as a Gaussian. A and
B are often chosen as symmetric and diagonal matrices,
respectively. By imposing additional constraints on A and
B, this density can be written as a Gaussian distribution on
vectorized rotation matrices. By setting to zero the derivative
of the log-likelihood

∂l(Q)

∂Q
= CT + 2AQB = 0, (33)

and exploiting several properties of the trace and the
Kronecker product we can rewrite the density as proportional
to

N
(

vec(Q)
∣∣∣ vec(A−1CTB−1), (A⊗B)−1

)
. (34)

A and B should be both invertible and (A⊗B) positive
definite.

In some tasks, it may be interesting to encode correlations
between positions and orientations. Rewritten as a Gaussian,
it is possible to create a joint distribution of position and
rotation matrices

N
( [

q

vec(Q)

] ∣∣∣∣∣
[

µ

vec(A−1CTB−1)

]>

,

[
Σxx ΣxX

ΣXx (A⊗B)−1

])
,

(35)
where ΣxX ∈ R3×9 is the covariance between positions and
orientations. This joint distribution can be ensured as valid
by imposing a constraint on ΣxX with Schur complement
condition for positive definiteness

Σ � 0 ⇐⇒ Σxx � 0, (A⊗B)−1 −ΣXxΣ−1xxΣxX � 0.
(36)

This complex parametrization and constraints are not
mandatory in the PoE framework, as the experts do not need
to be valid and properly normalized distributions themselves.
However, it can help to reduce the number of parameters
and to stabilize the learning procedure. As an alternative
approach, we present an experiment in Sec. 6.4 in which a
joint distribution of positions and orientations is learned with
a low-rank structure on the covariance.

Matrix normal distribution Matrix valued transforma-
tions can be encoded with a matrix normal distribution

MN (Q|M ,U ,V ) ∝

exp
(
− 1

2
tr
[
V −1(Q−M)>U−1(Q−M)

])
, (37)

where M ∈ Rn×p and U are V n× n and p× p positive
definite matrices, respectively. It can also be written as a
distribution of vectorized matrix as

vec(Q) ∝ N
(
vec(M), (V ⊗U)−1

)
, (38)

where the covariance matrix has fewer parameters than in a
Gaussian.
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Figure 7. To encode distributions of trajectories, probabilistic
movement primitives (ProMP) can be used as experts in a PoE.
In this example, a product of two ProMP experts is considered:
one defines a joint angle trajectory, while the other defines the
trajectory of the end-effector. A 3-DoF planar robot is used in
this example. The product of ProMPs is approximated using
variational inference as a mixture of ProMPs in configuration
space. Samples of trajectories of the end-effector are displayed,
as well as a full sequence of configurations. Even if each expert
is Gaussian, the product of ProMPs is multimodal because of
the planar robot kinematics.

Probabilistic movement primitives So far, the consid-
ered distributions targeted static configurations. Probabilistic
movement primitives (ProMP) is a way to build Gaussian
distributions of trajectories Paraschos et al. (2013).

An observation qt (position or joint angles) follows a
Gaussian distribution

pPROMP(qt|Φt,w,Σx) = N (qt|Ψ>
t w,Σx), (39)

where w is a weight vector and Φt a time-dependent
basis matrix. The weight vector also follows a Gaussian
distribution. The marginal distribution of the observation
given the parameters of the model becomes

pPROMP(qt|Φt,µw,Σw,Σx) =∫
N (qt|Ψ>

t w,Σx)N (w|µw,Σw)dw =

N (qt|Ψ>
t µw,Ψ

>
t ΣwΨt + Σx). (40)

ProMPs are fully compatible with our framework. We
can consider, for example, a product of ProMPs in multiple
task spaces and configuration space. For approximating the
product of ProMPs, it is also possible to use variational
inference with a mixture of Gaussians, as proposed in
Sec. 2.2.2. Instead of using full location and full covariance,
the mixture components can be a ProMP as well. In Fig. 7,
a mixture of ProMPs in configuration space is used to
approximate a product of a ProMPs in task space and in
configuration space. A 3-DoF planar robot is used, which
induced the multimodality of the product.

Approximate distributions in the tangent space of
manifolds Another approach compatible with the PoE
framework is to consider Gaussian distributions in the
tangent space of manifolds, as a way to encode orientations
Zeestraten et al. (2017) or manipulability ellipsoids Jaquier
et al. (2020). It has the advantages of being generic to
many different types of data. Also, the distribution is

approximately normalized in the tangent space. It provides
an easier way to initialize this expert individually (using
MLE) than if it was unnormalized. The only restriction is
that the logarithmic map Logµ(q), mapping elements from
the manifold to the tangent space, should be differentiable.
The density is given by

N (q|µ,Σ) ∝ exp
(
− 1

2
Logµ(q)> Σ−1 Logµ(q)

)
. (41)

Cumulative distribution functions (CDF) Inequality
constraints, such as static equilibrium, obstacles or joint
limits can be learned using cumulative distribution function

p(x ≤ b), with x ∼ N
(
T (q), σ2

)
, (42)

where T (q) is a scalar. For example, for half-plane
constraints, T (q) could be w>q, or for joint limits on first
joint T (q) = q0.

The use of the CDF makes the objectives continuous and
allows safety margin determined by σ to be considered.

Obstacles constraints might be impossible to compute
exactly and require collision checking techniques (Elban-
hawi and Simic (2014)). With stochastic optimization, our
approach is compatible with a stochastic approximation of
the collision related cost, which might speed up computation
substantially.

Uni-Gauss distributions In Sec. 3, we showed how a
PoE is compatible with standard nullspace approaches to
represent hierarchy between multiple tasks. Another way
to address this problem is to use uni-Gauss experts, as
proposed in Hinton (1999). These experts combine the
distribution defining a non-primary objective pm with a
uniform distribution

pUG,m(q) = πmpm(q) +
1− πm

c
, (43)

which means that each objective has a probability pm to be
fulfilled and 1− πm not to be fulfilled.

Classical prioritized approaches exploit redundancies of
the robot to achieve multiple tasks simultaneously Nakamura
et al. (1987). A nullspace projection matrix is used such
that commands required to solve a secondary task do
not influence the primary task. Using uni-Gauss experts
is a less strict approach that does not necessarily require
redundancies. Even if there is no redundancy to solve a
secondary task without influencing the first one, there may
be some mass at the intersection between the different
objectives.

There are two possible ways of estimating p̃(q) in the case
of Uni-Gauss experts. If the number of tasks is small, we
can introduce, for each task m, a binary random variable
indicating if the task is fulfilled or not. For each combination
of these variables, we can then compute p̃(q). The ELBO
can be used to estimate the relative mass of each of these
combinations, as done in model selection. For example,
if the tasks are not compatible, their product would have
a very small mass, as compared to the primary task. In
the case of numerous objectives, this approach becomes
computationally expensive because of the growing number
of combinations. We can instead marginalize these variables
and we fall back on (43). For practical reasons of flat
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gradients, the uniform distribution can be implemented as
a distribution of the same family as pm, but with a higher
variance.

5 Control
In this section, we present two control strategies that can be
used together with PoEs. In the first, the PoE defines the
preferred configurations of the robot. The robot should go
to these configurations and stay there, facing perturbations.
The negative log density− log p(q|θ1, ... ,θM ) of the PoE is
used as a cost function in an optimal control problem. This
approach is illustrated in Fig. 1. In the second scenario, the
PoE defines a distribution of configurations that the robot
should actively visit.

5.1 Optimal control
In optimal control, control commands u are computed with
the aim of minimizing a cost based on the control commands
and on the states of the system ξ. The discrete time linear
quadratic tracker (LQT) is a popular tractable subproblem of
optimal control, where the dynamics of the system are linear

ξt+1 = Atξt +Btut, (44)

with At and Bt being the time-dependent parameters of the
system. In LQT, the cost is quadratic, given as

J =
1

2

N−1∑
t=1

(
(ξt − zt)>Qt(ξk − zt) + u>

t Rut

)
, (45)

where zt is a desired state, Qt is a matrix weighting the
deviation from the desired state and R is a matrix weighting
the penalization of the control commands. The minimization
of the control commands have multiple underlying goals,
such as reducing energy consumption, producing smooth
movements through small accelerations, or ensuring safety
through the use of small forces. The resulting optimal
controller is linear, taking the form

ut = −Ktξt +Kv
t vt+1, (46)

whereKtξt is a feedback term andKv
t vt+1 is a feedforward

term. More details about the derivations can be found in
Bohner and Wintz (2011).

We can use this formulation to compute a controller that
would stay in regions of high density of the PoE. Let us
consider that we have a linearized model of the manipulator[

qt+1

q̇t+1

]
= At

[
qt
q̇t

]
+Btut, (47)

where q is the configuration of the robot and ut can be joint
accelerations or torques, depending on the controller used
on the robot. The state can be augmented with the different
experts transformations

ξt =


T1(qt)

...
TM (qt)
qt
q̇t

 =


y1,t

...
yM,t

qt
q̇t

 . (48)

The dynamics of the augmented system are linearized using
the Jacobian Jm(q) =

∂Tm(q)
∂q of each transformation m

ym,t+1 ≈ ym,t + Jm(qt) (qt+1 − qt)
≈ ym,t + Jm(qt) q̇t ∆t, (49)

where ∆t is the discretization of time. The complete system
can then be written in matrix form as

ξt+1︷ ︸︸ ︷
y1,t+1

...
yM,t+1

qt+1

q̇t+1

 =

Ãt︷ ︸︸ ︷
Id1 · · · 0 0 ∆tĴ1

...
. . .

...
...

...
0 · · · IdM 0 ∆tĴM
0 · · · 0 At



ξt︷ ︸︸ ︷
y1,t

...
yM,t

qt
q̇t

+

B̃t︷ ︸︸ ︷
[
0 Ĵ1

]
Bt

...[
0 ĴM

]
Bt

Bt

ut. (50)

The system Ãt and B̃t should not depend on the state; for
this reason, the Jacobians should be evaluated as Ĵm. There
could be evaluated either at the local maximum of the PoE
density where the robot would converge or at the current state
of the robot. The cost is defined as

J =

N−1∑
t=1

(
−

M∑
m=1

log pm(ym,t) +
1

2
q̇>
t Q̃q̇t +

1

2
u>
t Rut

)
,

(51)

where Q̃ penalizes the velocities. With the weight control
matrixR, they can be chosen as a diagonal matrix

Q̃ =

ς
−2
1 · · · 0
...

. . .
...

0 · · · ς−2P

 , R =

τ
−2
1 · · · 0
...

. . .
...

0 · · · τ−2P

 , (52)

where ςp and τp are respectively the range of velocities and
the forces (or accelerations) allowed on joint p. They both
correspond to the definition a desired Gaussian distribution
of velocities and forces of standard deviation ςp and τp on
joint p. If all the experts pm are Gaussian, this cost can be
rewritten exactly as (45) with

Q =


Σ−11 · · · 0 0

...
. . .

...
...

0 · · · Σ−1M 0

0 · · · 0 Q̃

 , zt =


µ1

...
µM
0

 , (53)

since the log-likelihood is a quadratic function. In the other
case, a quadratic approximation can be used as in iterative
LQR, see Li and Todorov (2004). The resulting controller
is a feedback controller as in (46), where the feedback is
executed on the different expert transformations

ut =

M∑
m=1

−Km,tTm(ξt) +Kv
m,tvm,t+1. (54)
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The gains Km,t obtained for each expert m depend on the
required precision (the higher the precision, the higher the
gain).

If the robot is controlled by torque commands, the whole
procedure of training a PoE and controlling the robot can be
used to set up automatic virtual guides, as shown in Fig. 1.
Multiple constraints, such as keeping an orientation, staying
on a plane, or pointing towards an object can be learned
from demonstration, and reproduced by the robot using the
proposed feedback controller. The robot will then be free to
be manipulated along directions that are not encoded by the
experts (or that have a high variance).

Fig. 8 shows a simulation of 7-DoF manipulator controlled
with this strategy, with a perturbation occurring at t =
2.35[s].

This controller can easily be implemented in a robotic
manipulator with two separate loops. A high-level loop
solves the LQT problem while a low-level control loop
executes the last computed controller until a new one is
available. These two loops are described in Alg. 1 and 2.

Algorithm 1: High-level loop (coded in Python)

1 setR and Q̃ as in (52)
2 computeQ and z, LQT cost from the expert

distributions as in (53)
3 while controlling do
4 (loop duration : 2− 10[ms])
5 computeA andB, linearized model of the

manipulator around current state
6 get q current configuration of the robot
7 foreach expert m do
8 compute Ĵm(q)
9 end

10 compute Â and B̂, augmented linear model as in
(50)

11 solve finite or infinite horizon LQT with constant
parameters over the horizon

12 publishK1,Kv
1 , v2, LQT controller parameters

13 end

Algorithm 2: Low-level control loop (coded in C++)

1 while controlling do
2 (loop duration : < 1[ms])
3 readK1,Kv

1 , v2, current LQT controller
parameters

4 get q, q̇ current configuration and velocity of the
robot

5 foreach expert m do
6 compute Tm(q) (call Python functions)
7 end
8 compute ξ as in (48)
9 compute and apply torques or accelerations as

u = −Ktξ1 +Kv
1v2

10 end

Figure 8. Example of 7-DoF manipulator controlled with an
LQT. To show the time evolution, only the kinematic chain is
displayed. The PoE is the intersection between a vertical plane
(e1 = 0) and a sphere. The two experts act on the end-effector.
They are defined by a Gaussian distribution on e1 around 0 and
by a Gaussian distribution on the log-distance to a target (black
square). On the left, the evolution of the values of the joint
angles is displayed over time. At t = 2.35[s], a perturbation in
configuration space occurs. The robot converges to a new local
mode of the PoE.

5.2 Ergodic control
In the second control strategy, a trajectory should be planned
to visit the PoE density. This problem is referred to as ergodic
coverage in Mathew and Mezić (2011) and has multiple
applications, such as surveillance or target localization.
Closer to the considered manipulation tasks, it can be used
to discover objects, learn dynamics or polish/paint surfaces.
In Ayvali et al. (2017), the ergodic coverage objective is
formulated as a KL divergence between the density to visit
p(q) and the time-average statistics of the trajectory Γ(q)

DKL(Γ||p) =

∫
q

Γ(q) log
Γ(q)

p(q)
dq. (55)

The time-average statistics defines the density covered by
the trajectory of the robot. Using the formulation with a KL
divergence, particular sensors or areas of influence can be
taken into account. For example, a Gaussian can be used to
model the area around the robot perceived by its sensors. The
time-average statistics become a mixture of Gaussians

Γ(q) ≈ 1

N

N−1∑
t=0

N (q|qt,Σ), (56)

where qt is the configuration of the robot at time t (for
a trajectory of N − 1 timesteps). The covariance Σ can
model the coverage of the sensor. A small Σ means a
short-distance coverage and implies finer trajectories. The
objective (55) is the same as in variational inference and
can be optimized with the ELBO objective in (7). Thus, it
is not required to have a properly normalized density to visit.
Given that the covered zone is modeled by a tractable density
(from which we can sample, and properly normalized), the
ergodic objective can be optimized easily with stochastic
gradient descent. Compared to the ELBO objective in (7), an
additional constraint has to be added for limiting velocities
and accelerations so that {qt}N−1t=1 is a consistent trajectory.

Fig. 9 shows a trajectory optimized to cover the PoE. The
robot is assumed to be controlled by velocity commands.
Velocities and accelerations are minimized, and the time-
averaged statistics is a mixture of Gaussians in task space.
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Figure 9. The trajectory of the robot is optimized to cover the
PoE. The density is defined by a position constraint of the
end-effector (expert 0) and a distance constraint (expert 1).

Figure 10. Samples of configurations for three tasks that
illustrate the advantages of using variational inference with a
mixture model for training a PoE. A 2-DoF planar robot is
considered. (a) Joint angle target. (b) Operational space target
(c) Operational space target and joint angle target.

6 Experiments

6.1 Multimodal distributions

In a first experiment, we show the advantages of using
variational inference to approximate the derivative of the
normalizing constant. We consider a 2-DoF planar robot
that should learn to distinguish between an operational-space
or a configuration-space objective. Three datasets are used
and shown in Fig. 10. They correspond to the following
subtasks: (a) only configuration space target (b) only task
space target, involving a multimodal PoE (c) a task-space
target with a joint angle preference, involving two modes of
unequal weights. The PoE model is defined by the following

Table 1. Quantitative evaluations of the learned distribution
using contrastive divergence (CD) and our approach based on
variational inference with a Gaussian mixture model (VI). The
table shows alpha-divergence Dα=1/2 measures between the
different approximations and the ground-truth distribution,
computed for the three tasks shown in Fig. 10.

Task (a) (b) (c)

CD 0.837 ± 0.597 0.039 ± 0.030 0.063 ± 0.026

VI 0.067 ± 0.060 0.016 ± 0.022 0.014 ± 0.004

transformations and distributions:

state : q ∈ R2,

transformations : y1 = T1(q) = Fx(q) ∈ R2,

y2 = T2(q) = q ∈ R2,

experts : y1 ∼ N (µ1, σ1I),

y2 ∼ N (µ2, σ2I),

parameters to learn : µ1, σ1,µ2, σ2,

where Fx(q) is the position of the end-effector of
the planar robot. The first and second experts analyzes
task-space objectives and configuration-space objectives,
respectively. Given three datasets of N = 30 configurations,
the corresponding models are learned either with contrastive
divergence (as proposed in Hinton (2002)) or using
variational inference (as proposed in Sec. 2.3). The process
is repeated multiple times with random initializations of the
parameters.

Quantitative evaluations are performed by computing the
alpha-divergence with α = 1/2 between the ground-truth
density from which the dataset was sampled and the density
learned with the different techniques. This divergence is also
related to the Bhattacharyya coefficient as

Dα=1/2(p||q̃) = −2 log

∫ √
p(q)q̃(q)dq. (57)

This integral was evaluated by discretizing the space.
Results are reported in Table 1. In all cases, the
variational approximation performs better. The performance
of contrastive divergence is especially poor in case (a),
showing high variations. The explanation comes from the
incapability of standard sampling methods to jump across
distant modes. Only the existence of a second mode, as
in case (b) and (c) can help to distinguish between a
configuration space and a task space target. A Markov chain
initialized on the data never discovers the second mode that
would be implied by a task space target. This potential
waste of probability mass goes unnoticed by contrastive
divergence. In contrast, variational inference with a mixture
of Gaussians can localize this region of probability. The
high variance of the contrastive divergence is due to the
nonexistent gradient between the relative standard deviations
σ1 and σ2 of the two experts. The final results are thus
determined mostly by the random initialization.
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Figure 11. Dataset for the bimanual task with a hierarchy.
Three situations are given, where each end-effector should
track the target of the same color (displayed as a square).

Figure 12. Samples from the different models learned for the
bimanual task with a hierarchy. Left: Using independent experts,
the secondary task is not well understood and its variance is
over-estimated. Center: Using a PoE, the target of the primary
task is inferred to be further away. Right: Using a PoE with a
nullspace structure, the targets are well recovered.

6.2 Hierarchical tasks
In this set of experiments, the robot has to learn two
competitive objectives, where one has a higher priority
than the other. The secondary objective is masked by the
resolution of the first objective and has to be uncovered.

Planar robot We first evaluate our approach in simpler
cases, with planar robots. In the first task, we consider a 5-
DoF planar robot with two dependent arms, as illustrated
in Fig. 11. Each end-effector should track its own target,
which should be recovered from demonstrations. The end-
effector with the highest priority task has three different
targets {µ(i)

1 }i=0,...,2 and the other end-effector has a
fixed target µ2. For each of the three cases i = 0, ... , 2,
N = 30 independent samples q̂n are given. The samples
are generated by approximating a ground-truth product of
experts with a mixture of K = 50 Gaussian components.
The end-effectors try to follow a normal distribution with a
standard deviation σ1 = σ2 = 0.02 around their respective
targets. In each situation, the secondary target is not
reachable. The PoE model is defined as:

state : q ∈ R5,

transformations : y1 = T1(q) = FR,x(q) ∈ R2,

y2 = T2(q) = FL,x(q) ∈ R2,

experts : y1 ∼ N (µ
(i)
1 , σ1I) | i = 0, ... , 2,

y2 ∼ N (µ2, σ2I),

parameters to learn : {µ(i)
1 }i=0,...,2,µ2, σ1, σ2.

FR,x and FL,x denote respectively the forward kinematics
(position only) of the right (blue) and left (orange) arm.
From the set of samples q̂n, the position of the targets
{µ(i)

1 }i=0,...,2,µ2 and their standard deviation σ1 and σ2
should be retrieved.

We compare three approaches to learn the model. The first
consists of maximum likelihood estimation of each expert
separately, after applying the transformations to the dataset.

Figure 13. Dataset for the hierarchical task with a
manipulability objective. The robot should track the target
(displayed as a blue square) and maximize a manipulability
measure. Four different targets are given.

With this approach, the main task is well understood. It
is not the case of the secondary task, which is masked.
The left end-effector displays a large variance, as shown
in Fig. 12(a). This variance cannot be explained without
taking into account the dependence between the two tasks
and their prioritization. The second approach is to use
a PoE with no prioritization between the objectives. The
dependence between the tasks is taken into account, which
results in a better understanding of the secondary objective.
The prioritization is still not taken into account, which has
two negative effects. As shown in Fig. 12(b). the targets of
the right arm {µ(i)

1 }i=0,...,2 are inferred further than they are,
and the standard deviation of the secondary task σ2 is slightly
exaggerated. These two misinterpretations compensate the
missing hierarchical structure by artificially increasing the
importance of the primary task. In the third approach, the
information of hierarchy is restored by using a product of
experts with the nullspace structure (PoENS) as presented in
Sec. 3. This time, the standard deviations of the two tasks as
well as their respective targets are well retrieved.

Quantitative results are produced in a slightly different
manner than for the previous experiment. As only the
gradient of the unnormalized log-likelihood of the PoENS
is defined, they are first approximated using variational
inference with a mixture of K = 50 Gaussians. Results are
reported in Table 2 under task (a). As noticed in Fig. 12, the
divergence is the smallest with the PoENS.

In the second task with planar robots, we are interested
in the manipulability measure presented in Sec. 4.1. The
considered robot has three joints and its principal task
is to track a point with its end-effector. One degree of
freedom remains, which should be used to maximize the
manipulability measure. This objective is set as a log-
normal distribution on the determinant of the manipulability
matrix (i.e., Gaussian distribution on the log). It defines
which manipulability value µ2 to track, together with the
allowed variation σ2. In the same way as in the previous
experiment, the end-effector should track four different
targets {µ(i)

1 }i=0,...,3. For each of the four cases i = 0, ... , 3,
N = 30 independent samples q̂n are given, which are shown
in Fig. 13. The PoE model is defined as:
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state : q ∈ R3,

transformations : y1 = T1(q) = Fx(q) ∈ R2,

y2 = T2(q) =

log det
(
J(q)J(q)>

)
∈ R+,

experts : y1 ∼ N (µ
(i)
1 , σ1I) | i = 0, ... , 3,

y2 ∼ N (µ2, σ2),

parameters to learn : {µ(i)
1 }i=0,...,3, µ2, σ1, σ2,

where F (x) is the position of the final link.

As before, we compare three ways of learning the model.
As a baseline, we follow the approach of Jaquier et al. (2020)
by considering independent training of the experts. We
employ a less elaborated description of the manipulability
task than in Jaquier et al. (2020), by considering the volume
of the manipulability ellipsoid instead of the full ellipsoid.
For our study, this simplified scalar descriptor is sufficient
to showcase the advantages of PoENS over an independent
training of the experts.

Fig. 14 presents samples generated from the different
models (for a target as in Fig. 14-(b)). When the experts are
learned independently (left), the manipulability is not well
understood. The samples are tracking a manipulability that
is lower than expected, and the variance is overestimated.
When training the PoE without the nullspace structure
(center), the distribution of generated samples better matches
the dataset. However, the task-space target is not well
estimated (it is inferred closer to the base of the robot to
counterbalance the manipulability objective). In contrast, the
samples retrieved from the PoENS (right) show that the task-
space target is well understood.

Quantitative evaluations for a bimanual robot are also
reported in Table 2.

These results show that considering independent training
of the experts has two limitations: (1) it does not exploit the
dependence between the task-space position F (x) and the
manipulability; and (2) it does not exploit the hierarchical
structure that often relegates the manipulability objective to
a secondary objective. When this structure is not exploited,
the manipulability objective cannot be understood, as it is not
directly observed. By maximum likelihood estimation of the
log-normal distribution on the dataset, the variance is high
and the mean value does not reflect the fact that we were
targeting the maximum of manipulability. For example, the
demonstration data in Fig. 13-(d) are characterized by very
small manipulability ellipsoids, which would be interpreted
erroneously if modeled independently from the tracking task.

Welding task We conduct a similar experiment with a
7-DoF Panda robot. The dataset mimics a welding task, in
which the position of the end-effector is more important
than its orientation. The robot is supposed to track the
position of the component to weld while preferably keeping
its orientation vertical. We give three sets of N = 30
independent samples q̂n for three different target positions
{µ(i)

x }i=0,...,3 as shown in Fig. 17. The orientation should be
kept fixed (the same in the three cases). The PoE model is

Figure 14. Samples from the different models learned for the
task with a manipulability objective. Left: Using independent
experts, the secondary task is not well understood (the
manipulability measure has a big variance in the dataset).
Center: Using a PoE, the estimation of the principal objective is
biased. Right: By providing the hierarchical structure, the two
objectives are well understood.

Table 2. Quantitative evaluations of the quality of the learned
distribution for the two planar tasks. The table shows
alpha-divergence Dα=1/2 measures between the different
approximations and the ground-truth distribution are computed.
(a) Bimanual task (b) Manipulability objective

Task (a) (b)

Independent
experts

1.814 ± 0.055 0.812 ± 0.117

PoE 0.258 ± 0.101 0.630 ± 0.086

PoENS 0.094 ± 0.024 0.202 ± 0.067

defined as:

state : q ∈ R7,

transformations : y1 = T1(q) = Fx(q) ∈ R3,

y2 = T2(q) = vec(FR(q)) ∈ R9,

y3 = T3(q) = q ∈ R7,

experts : y1 ∼ N (µ(i)
x , σxI) | i = 0, ... , 3,

y2 ∼ N (µR, σRI),

y3 ∼ N (µq, σqI),

parameters to learn : {µ(i)
x }i=0,...,3, σx,µR, σR,µq, σq

where Fx(q) is the position of the end-effector and
vec(FR(q)) its vectorized rotation matrix. We choose a
Gaussian distribution for the vectorized rotation matrix with
an isotropic covariance matrix σRI . As the renormalization
arises at the joint level in a PoE, this choice is acceptable
even if the rotation expert does not have the proper support.

We compared the same three ways of training the model.
As expected, with independent experts, a mean orientation
is computed, resulting in biased estimation of this objective
(see Fig. 17 second column). The PoE without hierarchy
performs a bit better, as it can understand the dependence
between the position and the orientation induced by the
kinematics. The estimation of the orientation is still biased
(see Fig. 17 third column). As in previous experiments,
the PoENS performs the best. The secondary objective of
orientation is clearly understood.
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Table 3. Quantitative evaluations of the quality of the learned
distribution for the 7-DoF Panda robot (welding task). The table
shows maximum mean discrepancy MMD2

u measures between
the dataset and different models for the 3 cases displayed in
Fig. 17.

Case (0) (1) (2)

Independent
experts

1.3e−3 1.3e−2 8.2e−3

PoE 7.0e−4 1.7e−3 1.4e−3

PoENS −9.8e−6 −8.5e−5 4.5e−4

For the quantitative experiments, we compare the dataset
with the learned distributions. This comparison is done
in each of the 3 situations and by using the maximum
mean discrepancy* MMD2

u, see Gretton et al. (2012). The
discrepancy is computed with 500 samples and a RBF kernel
with γ = 0.1. The results are reported in Table 3 and in
Fig. 17, where PoENS shows much better results.

Robot waiter task In this experiment we consider the
task of serving a drink on a tray (Fig. 15). The robot needs
to move the tray in response to the position of a person
such that it stays parallel to the floor (orientation sub-task)
and the bottle is within the person’s hand (position sub-
task). However, in order to avoid spilling the drink, the
position sub-task should only be performed if the orientation
sub-task is fulfilled. Here we show that, by using PoENS,
both priorities and task references can be learned from
demonstrations. This improves on a similar experiment
conducted in Silvério et al. (2018) in which we could teach
the strict priority hierarchies but the references (desired
position and orientation of the end-effector) were taught
separately. For evaluation purposes, we employ an additional
gravity-compensated robot to play the role of the person (the
left arm in Fig. 15).

We collected samples q̂n for three different positions
of the left hand, with N = 10. In two of the cases, both
position and orientation sub-tasks can be achieved (Fig. 15,
top). In the other one, only the orientation task is fulfilled
(Fig. 15, bottom), with the robot doing its best to track the
gripper position. The used PoE model was the same as in
the previous welding task experiment, except for the expert
y1 that is now the end-effector position with respect to the
gripper coordinate system.

Figure 16 shows the obtained experimental results (a
video of the complete experiment is available at https://
sites.google.com/view/poexperts). We observe
that the robot respects the demonstrated priorities and learns
the end-effector pose correctly. The controller was computed
with (54), using the dynamical system (50) augmented with
the null space projection matrix of the identified hierarchy.

6.3 Learning transformations and conditional
PoEs

In these experiments, we compare PoEs with less structured
ways to learn distributions. We show that PoEs, by providing
more structure, require fewer samples to be trained.

Figure 15. Several demonstrations of the desired priority
behavior are given.Top: Both position and orientation are
achievable. Bottom: Position is only partially fulfilled, to allow
the tray to remain parallel to the floor. The left robot arm is
playing the role of a person who should grasp the bottle.

They also allow finding simple explanations for complex
distribution, leading to quicker generalization. Unlike the
previous experiments, the experts transformations are this
time only partially known.

New end-effector We consider an experiment with
the 7-DoF Panda robot in which a new end-effector is
defined. The new end-effector has a fixed position d in
the coordinate system of the known end-effector. We want
to learn the distribution of configurations where the new
end-effector follows a Gaussian distribution around µx,
a given task-space position target. To compare the data-
efficiency of the models, the datasets are composed of N ∈
{3, 10, 30, 100, 3000} independent samples, as illustrated in
Fig. 18-left. The PoE model is defined as:

state : q ∈ R7,

transformations : y1 = T1(q) = FR(q)d+ Fx(q)

= Fd(q) ∈ R3,

y2 = T2(q) = q ∈ R7,

experts : y1 ∼ N (µx, σxI),

y2 ∼ N (µq, σqI),

parameters to learn : d,µx, σx,µq, σq,

where FR(q) is the rotation matrix and Fx(q) the position of
the known end-effector. The second expert learns a preferred
joint configuration. We compare the PoE with five other
techniques to learn distributions. The first is a variational
autoencoder Kingma and Welling (2013). As architecture for
both the encoder and the decoder, we used 2 layers of 20 fully
connected hidden units and tanh activation. The latent space
was of 4 dimensions, which corresponds to the remaining
DoFs of the robot, after constraining 3 DoFs with the position
of the new end-effector. The second technique considered is

∗with an unbiased estimate of the kernel mean, it is possible to get negative
values. Negative values indicates a close to zero discrepancy; their absolute
value can be discarded.
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Figure 16. The right arm should keep the tray horizontal and the bottle between the gripper fingers. With a PoENS model, the
robot learns i) the tray pose with respect to the gripper and ii) that the tray orientation has a higher priority than the position. Top
row: Reproduction when both position and orientation can be fulfilled. Bottom row: Reproduction when position reference is too far
so the robot prioritizes orientation.

Figure 17. Dataset and retrieved samples for the hierarchical task with the 7-DoF Panda robot (welding task). Only the kinematic
chain of the robot is displayed, such that multiple samples can be shown. The dataset provides three different situations (displayed
in blue, yellow and red) in which the robot should track a different target with its end-effector. In each situation, the orientation
should be held vertical as a secondary task.

Figure 18. Dataset and samples from the different models for a
task involving an unknown end-effector. In this illustration, the
models were trained with 3000 samples.

a Dirichlet process Gaussian mixture model Bishop (2006).
In this model, the number of Gaussian components (with full
covariances) is learned according to the number of datapoints
and the complexity of the distribution. Another model tested
is a transformed distribution using an invertible neural
network (NVP) as in Dinh et al. (2017). As architecture, four
layers of 108 hidden units with relu activation were used.
The two last models are GANs Goodfellow et al. (2014). In
these two cases, both the generator and discriminators are
multilayer perceptrons with 3 layers of 50 hidden units each
and sigmoid activation. The latent space of the generator
is of 10 dimensions. In the second GAN, that we denote
”GAN Tm”, the discriminator is helped by accessing the
samples and demonstrations through the different task-space
transformations.

For each of the six techniques, the model was learned with
a different number of samples. Samples from the PoE, the

Figure 19. Quantitative results for a task involving an unknown
end-effector. The graphs show alpha-divergence measures
(with α = 1/2) between the dataset and the different models for
the different sizes of the dataset.

VAE and the GAN Tmare shown in Fig. 18, where the whole
dataset was used to train the models. For each model, 500
samples were generated, for which the position of the new
end-effector was computed. We compared the distribution of
end-effector positions between each model and the dataset
using maximum mean discrepancy MMD2

u. The results are
reported in Fig. 19. The PoE performs better than the others
for each number of datapoints. Its performance is also less
influenced by this number. Its advantage can be explained
by the difficulty to represent the distribution in configuration
space, which has a complex shape. Since the target is also
very precise, this distribution is close to a 4 dimensional
manifold embedded in a 7-dimensional space, which makes
it particularly difficult to be encoded as a mixture of
Gaussians. A Gaussian approximating a part of this manifold
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Figure 20. Dataset and samples from the different models for a
task involving an unknown end-effector. Three cases are
reproduced. Left column: The distribution is sampled on a
known target. Middle column: The target is in-between two
given targets. Right column: The target is far from the given
targets. The first and second rows show results for a conditional
variational autoencoder and a PoE, respectively.

will have an important portion of its density outside of the
manifold, resulting in an imprecise tracking. Only a high
number of Gaussian components can approximate well this
distribution. Moreover, training such a model requires huge
datasets to cover well the entire manifold.

It is interesting to notice that GAN Tm performs quite
well. In Fig. 18, samples from the new end-effector are
tracking the target better with GAN Tm than with VAE. The
standard GAN was not displayed here but has very similar
performance as the VAE. Unlike VAEs, GANs are very
appropriate to exploit the existence of task spaces as hand-
engineered features of the discriminator. To our knowledge,
they are the best alternative to PoEs if more data is available.

Conditional distributions This experiment is similar to
the previous one, but requires a generalization to different
targets for the new end-effector. The dataset is split into
3 cases with N = 1000 datapoints for each. Unlike in the
previous experiment, the targets {µ(i)

x }2i=0 are given. The
PoE model is defined as before, with:

state : q ∈ R7,

transformations : y1 = T1(q) = FR(q)d+ Fx(q)

= Fd(q) ∈ R3,

y2 = T2(q) = q ∈ R7,

experts : y1 ∼ N (µ(i)
x , σxI) | i = 0, ... , 3,

y2 ∼ N (µq, σqI),

parameters to learn : d, σx,µq, σq.

For the evaluations, we used a conditional variational
autoencoder (VAE), where the targets {µ(i)

x }2i=0 are
concatenated to the corresponding datapoints at the entrance
of the encoder and also concatenated to the latent variables at
the entrance of the decoder. For the Gaussian mixture model,
we encode the joint distribution of configurations q and
targets and used conditioning over new targets to retrieve the
corresponding distribution of states, similarly to Gaussian
mixture regression (GMR). We evaluate the quality of the
distribution with MMD2

u in three cases. In case (a) (Fig. 20-
left), the target is one already given in the dataset. In case
(b) (Fig. 20-center), the target is between two given targets.
In (a) and (b), VAE performs quite well, with the same

Table 4. Quantitative results for the task with the new
end-effector. The table shows maximum mean discrepancy
MMD2

u measures between the dataset and the different models
for the different cases. (a) The distribution is sampled on a
known target. (b) The target is in-between two given targets. (c)
Generalization with respect to a new target far from the given
targets.

Case (a) (b) (c)

VAE 8.8e−4 2.2e−4 1.0e−2

GMR 2.7e−6 5.1e−6 9.0e−2

PoE 3.5e−9 −2.2e−7 3.4e−7

limitations as in the previous experiments. In the last case
(Fig. 20-right), the target is far outside and the performance
of VAE further reduced. The PoE performs very well in
the three cases, as shown also in the quantitative evaluation
reported in Table 4. The only drawback is that it requires
some time to approximate the distribution given the new
target, as only the unnormalized density of the PoE is directly
accessible. Note that this is not a problem if the log-pdf is
used as a reward function in optimal control, as proposed in
Sec. 5.

6.4 End-effector position and rotation
correlations

In this last experiment, we show how our framework can
help to cope with orientation statistics. Typical distributions,
such as matrix Bingham—von Mises—Fisher distribution
(BMF) are hard to use, because of their intractable
normalizing constant. In PoEs, the normalization happens
in the configuration space, which makes the use of
intractable density possible. Another tempting approach
is to use a multivariate normal distribution of vectorized
rotation matrices. When training with maximum likelihood
estimation, this leads to bad approximations. Indeed, the
wrong normalizing constant is considered because the space
of rotation matrices is discarded. We show that using
such vectorized distributions is fine with the PoE as the
normalizing constant is computed in the product space.
Also, in some cases, the Bingham—von Mises—Fisher
distribution can be computed as a Gaussian on the vectorized
matrix (see Sec. 4.2).

We produced three datasets, composed each one of N =
3000 independent samples from a ground-truth PoE model.
The number of samples is much higher than required to
understand the task but reduces the variance of the estimation
of the parameters to provide precise comparisons. The PoE
model used to sample has a correlation between the height
of the end-effector (e2) and the rotation along this axis. In
the first case (a), the correlation is induced by penalizing
deviations from a linear relationship between elements of
the rotation matrix and the height of the end-effector. This
dataset is shown in Fig. 21. In the two other cases (b) and
(c), the correlation is induced with the z Euler angle instead
of the rotation matrix. In (b) and (c), the standard deviations
of this angle is 0.2 and 1., respectively. The PoE model is
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Figure 21. Samples where the height of the end-effector is
correlated with its rotation along the e1-axis. The transformation
matrix of the end-effector is displayed.

defined as:

state : q ∈ R7,

transformations : y1 = T1(q) = Fx,vec(R)(q) ∈ R12,

experts : y1 ∼ N (µ,diag(σ) +LLT ),

parameters to learn : µ, σ,L,

where y1 is a concatenation of the position of the end-
effector and its vectorized rotation matrix. The expert
is a Gaussian with a structured covariance matrix. The
covariance is composed of a diagonal component diag(σ),
whose diagonal is the vector σ and a low-rank component
L ∈ R12×naxis that encodes correlations. In this experiment,
naxis is chosen to be 1 because there is only one axis
of covariance. The covariance matrix and the mean µ can
also be parametrized to have a marginal distribution of
rotations in the form of a matrix Bingham—von Mises—
Fisher distribution, a marginal distribution of position as a
Gaussian and a covariance between the two (see (35)).

We compare our approach with two others, where only
the concatenated position and orientation y1 is taken into
account and without exploiting the kinematic structure of
the robot. In the first alternative, we perform maximum
likelihood estimation of a Gaussian with y1. In the second,
we use a Gaussian on a Riemannian manifold as in
Zeestraten et al. (2017). The rotation matrices are converted
to quaternions and the considered manifold is the product
between a Euclidean and spherical 3-manifold. For the
quantitative evaluation, we sampled 500 points from each
model and computed MMD2

u with the dataset. Results are
reported in Table 5. The vectorized Gaussian is the worst-
performing model. Its best performance is in case (b), when
the standard deviation of the angle is small, making the
Euclidean approximation more valid. The PoE performs
better in all cases. As expected, its advantage is the biggest
in case (a), where the data was actually generated with
a correlation between elements of the rotation matrix and
height of the end-effector. Figure 22 shows the correlation
between the height of the end-effector and the first element
of the first row of the rotation matrix for case (a).

Figure 22. Scatter plot showing the correlation between the
height of the end-effector and the first element of the first row of
the rotation matrix for case (a). The dataset is shown in black
and the samples from the different models in blue.

7 Conclusion
We proposed a framework based on products of experts
to encode distributions in robotics. We demonstrated the
pertinence of the model in various applications, and showed
that this framework can be linked to many existing
learning from demonstration representations and methods.
By incorporating robot knowledge as transformations, we
showed that such approach is more data-efficient than
general approaches like variational autoencoder. We also
discussed the promises that such approach hold to tackle
wide-ranging data problems in robotics, by providing a
framework that can start learning from few trials or
demonstrations, but that it rich enough to progress once more
data are available. Indeed, since PoEs offer the flexibility
to learn transformations as neural networks, the approach
can span a wide range of problems, from small datasets
with significant a priori knowledge to bigger datasets with
less structured models. In the experiments, we validated
that PoEs offer substantial improvements over approaches
in which models are learned separately, emphasizing the
capability of the approach to uncover tasks masked by
kinematic limitations or by the resolutions of higher-level
objectives.
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