
IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED JULY, 2019 1

Bayesian Gaussian Mixture Model
for Robotic Policy Imitation

Emmanuel Pignat, and Sylvain Calinon

Abstract—A common approach to learn robotic skills is to
imitate a demonstrated policy. Due to the compounding of small
errors and perturbations, this approach may let the robot leave
the states in which the demonstrations were provided. This
requires the consideration of additional strategies to guarantee
that the robot will behave appropriately when facing unknown
states. We propose to use a Bayesian method to quantify the
action uncertainty at each state. The proposed Bayesian method
is simple to set up, computationally efficient, and can adapt to
a wide range of problems. Our approach exploits the estimated
uncertainty to fuse the imitation policy with additional policies.
It is validated on a Panda robot with the imitation of three
manipulation tasks in the continuous domain using different
control input/state pairs.

Index Terms—Learning by Demonstration, Learning and
Adaptive Systems, Probability and Statistical Methods

I. INTRODUCTION

MANY learning modalities exist to acquire robot manip-
ulation tasks. Reward-based methods, such as optimal

control (OC) or reinforcement learning (RL), either require
accurate models or a large number of samples. An appealing
approach is behavior cloning (or policy imitation), where the
robot learns to imitate a policy that consists of a conditional
model p(ut|xt) retrieving a control command ut at state
xt. Due to modeling errors, perturbations or different initial
conditions, executing such policy can quickly lead the robot far
from the distribution of states visited during the learning phase.
This problem is often referred to as the distributional shift
[1]. When applied to a real system, the actions can therefore
be dangerous and lead to catastrophic consequences. Many
approaches, such as [1], have been addressing this problem
in the general case. A subset of these approaches focus on
learning manipulation tasks from a small set of demonstrations
[2], [3], [4]. In order to guarantee safe actions, these techniques
typically add constraints to the policy, by introducing time-
dependence structures or by developing hybrid, less general
approaches. We propose to keep the flexibility of policy
imitation without constraining heavily the policy to be learned

Manuscript received: February, 24, 2019; Revised June, 1, 2019; Accepted
July, 12, 2019.

This paper was recommended for publication by Editor Dongheui Lee upon
evaluation of the Associate Editor and Reviewers’ comments. The research
leading to these results has received funding from the European Commission’s
Horizon 2020 Programme through the MEMMO Project (Memory of Motion,
http://www.memmo-project.eu/, grant agreement 780684) and CoLLaboratE
project (https://collaborate-project.eu/, grant agreement 820767).

The authors are with the Idiap Research Institute, Mar-
tigny, Switzerland. emmanuel.pignat@idiap.ch,
sylvain.calinon@idiap.ch.

Digital Object Identifier (DOI): see top of this page.

Fig. 1. Comparison of Bayesian and non-Bayesian GMM conditional distri-
butions. The flow field represents the expectation of p(u|x,X,U) and the
colormap its entropy H(p(u|x,X,U)). Yellow color is for lower entropy,
meaning higher certainty. The black lines are the demonstrations X (a)
Bayesian model: Certainty is localized in the vicinity of the demonstrations.
The policy retrieved further away can result in poor generalization, but the
system is aware of this through the uncertainty estimate. (b) Non-Bayesian
model: The entropy only relates to the variations of the demonstrated policy
instead of a Bayesian uncertainty.

by relying on Bayesian models, providing uncertainty quantifi-
cation measures. Uncertainty quantification can be exploited in
various ways, but such capability often comes at the expense of
being computationally demanding. In this work, we propose
a computationally efficient and simple Bayesian model that
can be used for policy imitation. It allows active learning or
fusion of policies, which will be detailed in Sec. IV. The
flexibility of the proposed model can be exploited in wide-
ranging data problems, in which the robot can start learning
from a small set of data, without limiting its capability to
increase the complexity of the task when more data become
available.

For didactic and visualization purposes, we will consider
throughout the article a simple 2D velocity controlled system
with state as position (see e.g., Fig. 1). However, the approach
is developed for higher dimensional systems, which will be
demonstrated in Sec. V with velocity and force control of a
7-axis manipulator.

II. RELATED WORK

Several works have tackled the distributional shift problem
in the general case. In [1], Ross et al. used a combination of
expert and learner policy. In [5], perturbations are added in
order to force the expert to demonstrate recovery strategies,
resulting in a more robust policy.

More closely related to our manipulation tasks, Khansari-
Zadeh et al. have used a similar approach to ours to learn

http://www.memmo-project.eu/
https://collaborate-project.eu/

2 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED JULY, 2019

a policy of the form ẋ = f(x) [3]. They used conditional
distributions p(ẋ|x) in a joint model of p(x, ẋ) represented as
a Gaussian mixture model (GMM). A structure was imposed
on the parameters to guarantee asymptotic convergence. As an
alternative, we propose to exploit the uncertainty information
of a Bayesian GMM, resulting in a less constrained approach
that can scale easily to higher dimensions.

Dynamical movement primitives (DMP) is a popular ap-
proach that combines a stable controller (spring-damper sys-
tem) with non-linear forcing terms decaying over time through
the use of a phase variable, ensuring convergence at the end
of the motion [6]. A similar approach is used in [2] where
the non-linear part is encoded using conditional distributions
in GMM. Due to their underlying time dependence, these
approaches are often limited to either point-to-point or cyclic
motions of known period, with limited temporal and spatial
robustness to perturbations.

Another approach to avoid these problems is to model
distributions of states or trajectories instead of policies [7],
[4]. However, these techniques are limited to the imitation
of trajectories and cannot handle easily misaligned or partial
demonstrations of movements.

Inverse optimal control [8], which tries to find the objective
minimized by the demonstrations, is another direction to
increase robustness and generalization. It often requires more
training data and is computationally heavy.

If a reward function for the task is accessible, an interesting
alternative is to combine the proposed policy imitation strategy
with reinforcement learning [9], [10], where the imitation
loss can reduce the exploration phase while the reinforcement
learning overcomes the limits of imitation.

III. BAYESIAN GAUSSIAN MIXTURE MODEL
CONDITIONING

Numerous regression techniques exist and have been applied
to robotics. In this section, we derive a Bayesian version of
Gaussian mixture conditioning [11], which was already used in
[2], [3]. Besides uncertainty quantification, we start by listing
the characteristics required in our tasks to motivate the need
for a different approach.

a) Multimodal conditional: Policies from human demon-
strations are never optimal but exhibit some stochasticity. In
some tasks, for example implying obstacle avoidance, there
could be multiple clearly separated paths. Fig. 2 illustrates
this idea. Our approach should be able to encode arbitrarily
complex conditional distributions. Existing approaches such
as locally weighted projection regression (LWPR) [12] or
Gaussian process regression (GPR) [13] only model unimodal
conditional distribution. In its original form, GPR assumes
homoscedasticity (constant covariance over the state).

b) Efficient and robust computation: Most Bayesian
models can be computationally demanding for both learning
and prediction. For fast and interactive learning, we seek
to keep a low training time (below 5 sec for the tasks
shown in the experiments). For reactivity and stability, the
prediction should be below 1 ms. We seek to avoid difficult
model selection/hyperparameters tuning, for the approach to

Fig. 2. Advantages of encoding multimodal policy p(u|x). The demon-
strations show how to reach a point while avoiding an obstacle. At a given
position, the distribution of velocity is bimodal, indicating to go either upwards
or downwards. (a) Multiple reproductions executed by sampling from an
expressive multimodal policy p(u|x) as in (18). (b) Reproduction with a
unimodal policy, where moment matching was applied to (18). The average
command indicates to go straight, which results in a failure.

be applied in a wide range of tasks, controllers and robotic
platforms.

c) Wide-ranging data: The approach should be able to
encode very simple policies with a few datapoints and more
complex ones when more datapoints are available.

Representing a joint distribution as a Gaussian mixture
model and computing conditional distribution is simple and
fast [11], with various applications in robotics [2], [3].
Bayesian regression methods approximate the posterior dis-
tribution p(θ|X,Y) of the model parameters θ, given input
X and output Y datasets.1 Then, predictions are made by
marginalizing over the parameters posterior distribution, in
order to propagate model uncertainties to predictions

p(y|x,X,Y) =

∫
θ

p(y|x,θ)p(θ|X,Y)dθ, (1)

where x is a new query. This distribution is called posterior
predictive. Parametric non-Bayesian methods typically rely on
a single point estimate of the parameters θ? such as maximum
likelihood. A variety of methods, adapted to the various model,
exists for approximating p(θ|X,Y). For example, variational
methods, Monte Carlo methods or expectation propagation.
For its scalability and efficiency, we present here a variational
method using conjugate priors and mean field approximation,
see [14] for details.

A. Bayesian analysis of multivariate normal distribution
We first focus on the Bayesian analysis of multivariate

normal distribution (MVN), also detailed in [15], and then
treat the mixture case. As a notation, we use z to denote[
x> y>

]>
, a joint observation of input and output. Z denotes

the joint dataset.
a) Prior: The conjugate prior of the MVN is the normal-

Wishart distribution. The convenience of a conjugate prior
is the closed-form expression of the posterior. The normal-
Wishart distribution is a distribution over mean µ and preci-
sion matrix Λ,

p(µ,Λ) = NW(µ,Λ|µ0, κ, ν,T), (2)

= N
(
µ|µ0, (κΛ)−1

)
Wν(Λ|T), (3)

1Here, we refer to the output as y, which corresponds to the control
command u in an imitation problem.

PIGNATet al.: BAYESIAN GAUSSIAN MIXTURE MODEL FOR ROBOTIC POLICY IMITATION 3

where T and ν are the scale matrix and the degree of freedom
of the Wishart distribution, and κ is the precision of the mean.

b) Posterior: The closed form expression for the poste-
rior is

p(µ,Λ|X) = N
(
µ|µn, (κnΛn)−1

)
Wνn(Λn|Tn), (4)

µn =
κµ0 + nz̄

κ+ n
, (5)

Tn = T + S +
κn

κ+ n
(z0 − z̄)(µ0 − z̄)>, (6)

S =

n∑
i=1

(zi − z̄)(zi − z̄)>, (7)

νn = ν + n, κn = κ+ n, (8)

where n is the number of observations and z̄ is the empirical
mean. As for conjugate priors, the prior distribution can be
interpreted as pseudo-observations to which the dataset is
added.

c) Posterior predictive: Computing the posterior predic-
tive distribution

p(z|Z) =

∫
Λ,µ

p(z|µ,Λ)p(µ,Λ|Z)dΛdµ, (9)

yields a multivariate t-distribution with degree of freedom νn−
d+ 1

p(z|Z) = tνn−d+1

(
z|µn,

Tn(κn + 1)

κn(νn − d+ 1)

)
, (10)

where d is the dimensionality of z. The multivariate t-
distribution has heavier tails than the MVN. The MVN is a
special case of this latter, when the degree of freedom param-
eter tends to infinity, which corresponds to having infinitely
many observations.

d) Conditional posterior predictive: For our application,
we are interested in computing conditional distributions in the
joint distribution of our input x and output y. We rewrite the
result from (9) as

p(x,y |X,Y) = tνz (µz,Σz). (11)

Following [16], the multivariate t-distribution conditional dis-
tribution is also a multivariate t-distribution,

p(y |x,X,Y) = tνy|x(µy|x,Σy|x), (12)

with

νy|x = νxy + dx, (13)

µy|x = µy + ΣyxΣ−1x (x− µx), (14)

Σy|x =
νxy+(x−µx)>Σ−1x (x−µx)

νxy + dx
(Σy−ΣyxΣ−1x Σ>

yx),

(15)

where dx is the dimension of x, with µz and Σz decomposed
as

µz =

[
µx
µy

]
, Σz =

[
Σx Σxy
Σyx Σy

]
. (16)

The mean µy|x follows a linear trend on x and the scale
matrix Σy|x increases as the query point is far from the input
marginal distribution, with a dependence on the degree of

Fig. 3. Conditional distribution p(y|x) where p(x,y) is modeled as a
mixture of Gaussians. The mean and the standard deviation are represented
by applying moment matching on the multimodal conditional distribution.
(blue) The joint distribution has a Dirichlet process prior. (red) The prior is a
Dirichlet distribution, with a fixed number of clusters. (yellow) The prediction
is done without integrating the posterior distribution, which results in a lack
of estimation of its uncertainty far from training data.

freedom. These expressions are similar to MVN conditional
but the scale (Σyx = Σx −ΣyxΣ−1x Σ>

yx for the MVN) has
an additional factor, increasing uncertainty as x is far from
the known distribution.

B. Bayesian analysis of the mixture model

Using the conjugate prior for the MVN leads to very
efficient training of mixtures with mean-field approximation
or Gibbs sampling. Efficient algorithms similar to expectation
maximization (EM) can be derived. For brevity, we will here
only summarize the results relevant to our application (see
e.g., [14] for details). Using mean-field approximation and
variational inference, the posterior predictive distribution of
a mixture of MVN is a mixture of multivariate t-distributions

p(z|Z) =

K∑
k=1

πk tνk−d+1(z|µk,
Tk(κk + 1)

κk(νk − d+ 1)
). (17)

The conditional posterior distribution is then also a mixture

p(y|x,X,Y) =

K∑
k=1

p(k|x,X,Y)p(y| k,x,X,Y), (18)

where we need to compute the marginal probability of the
component k given the input x

p(k|x,X) =
πktνx,k

(x|µx,k,Σx,k)∑
j πjtνx,j

(x|µx,j ,Σx,j)
(19)

and apply conditioning in each component using (13)–(15)

p(y|k,x,X,Y) = tνx|y,k
(y|µy|x,k,Σy|x,k). (20)

Equation (19) exploits the property that marginals of
multivariate-t distributions are of the same family [16].

a) Dirichlet distribution or Dirichlet process: In [14], the
Bayesian Gaussian mixture model is presented with a Dirichlet
distribution prior over the mixing coefficients π. An alternative
is to use a Dirichlet process, a non-parametric prior with an
infinite number of clusters. For the learning part, this allows
the model to cope with an increasing number of datapoints and
adapting the model complexity. Very efficient online learning
strategies [17] exist. With a Dirichlet process, the posterior
predictive distribution is similar to (17) but with an additional
mixture component being the prior predictive distribution of
the MVN. Conditional distribution given points far from the

4 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED JULY, 2019

training data would have the shape of the marginal predictive
prior, similarly as in GPR. Fig. 3 illustrates the difference,
when conditioning, between the Dirichlet process and the
distribution. When applied to a policy, it means that when
diverging from the distribution of visited states, the control
command distribution will match the given prior.

With a Dirichlet process, the model presented here is a
particular case of [18], having the advantages of faster training
with variational techniques and faster retrieval with closed-
form integration.

When using a Dirichlet process prior, the number of clusters
is determined by the data. This number is particularly influ-
enced by the hyperparameters ν and T of the Wishart prior.
A high ν leads to a high number of small clusters. On the
contrary, a high T implies an important regularization on the
covariances, which leads to a small number of big clusters. In
some cases, it is easier to determine a fixed number of clusters
with a Dirichlet distribution. In that case, ν and T can be set
small, such that the posterior is more influenced by the data
than by the prior.

IV. PRODUCT OF POLICY DISTRIBUTIONS

In cognitive science, it is known that two heads are better
than one if they can provide an evaluation of their uncertainty
when bringing their knowledge together [19]. In machine
learning, fusing multiples sources is referred to as products
of experts (PoE) [20]. In this section, we propose to exploit
the uncertainty presented in the above, by fusing multiple
policies p1(u|x), ... , pM (u|x), coming from multiple sources
or learning strategies.

In the general case, computing the mode of a PoE requires
optimization, which is inappropriate in applications where the
policy should be computed fast. However, when assuming
an MVN for each expert i, Ni(x|µi,Λ−1i), the computation
becomes lightweight. The product distribution has the closed
form expression

Λ̄ =

M∑
i=1

Λi, µ̄ = Λ̄−1
M∑
i=1

Λiµi, (21)

where Λ denotes the precision matrix (inverse of covariance).
This result has an intuitive interpretation: the estimate is an
average of the sources weighted by their precisions.

If we want to fuse the policy imitation that we proposed in
(18) with another policy, several alternatives are possible. If
speed is a priority, for example when using torque control, the
full conditional distribution (18) could be approximated as an
MVN, which enables fast fusion using (21). For this purpose,
moment matching can be used. This approximation can be
harmful in case of clearly multimodal policies, as illustrated
in Fig. 2(b). If more time is available for computation and/or a
higher precision is required, (18) can be estimated as a mixture
of MVN by applying moment matching to each cluster. The
product of a mixture of MVN and another mixture (or just
an MVN) is also a mixture of MVN [21]. To give an idea
about computation time, the product between two mixtures
of K = 25 components and du = 7 dimensionality of u
takes about 3 ms on a standard computer with NumPy. The

product between this mixture and an MVN takes about 0.25
ms. In the experiments presented in Sec. V, the global moment
matching approximation with an MVN is used, as the tasks
do not exhibit multimodality.

A. Examples of controllers

We present a set of policies that can be combined to increase
robustness and that will be used in the experiments.

a) Optimal control: If the task can be formulated as a
cost (e.g., attaining a given state), an interesting strategy is to
use optimal control (OC). Classically, these techniques require
an accurate model of the system and are subject to local
minima (for example, in an environment with obstacles). In
combination with imitation, we propose to use OC with crude
model approximations (e.g., without modeling obstacles).

In order to combine the policy, we need the OC solver to
retrieve a distribution of commands p(u). A first way will
be to use the solution as the mean of an MVN and fix its
precision heuristically, such that it dominates the imitation
policy outside of the training data. A more rigorous way
is to use the maximum entropy principle [22], retrieving a
near optimal stochastic policy. However, this technique is
much more computationally demanding than the standard OC
problem. When using linear dynamics and quadratic cost, the
maximum entropy solution can be retrieved very efficiently
[23], using linear quadratic tracking (LQT) [24] as

p(ut|xt) = N (−Ktxt + ct,Q
−1
t). (22)

b) Time-dependent policy: For discrete point-to-point
tasks, it is possible to use a policy that will ensure convergence
at the end of the motion. This structure is already given in
dynamical movement primitives (DMP) [6] or in [2], where a
phase variable is used to switch between controllers. Our ap-
proach allows for a more complex and better-motivated fusion
of policies. This stable controller can either be engineered or
computed with OC. Here, we used an LQT where the cost on
the state is active only at the end of the task. The controller,
in the form of (22), has gain Kt and precision matrix Qt

increasing along time, as shown in Fig. 4b for starting and
final time.

c) Conservative policy: We also propose to use a policy
that brings us back to the distribution of states where the
policy is known, as in [25]. In their case, the policy was
designed as a PD controller, but we propose to use OC or
model-based policy search for more generality. In the proposed
GMM, the conservative policy can either be optimized to
minimize the uncertainty of the imitation policy (e.g., given
by the entropy of the conditional distribution) or to converge
to the marginal distribution of states. For the experiments,
we chose to solve the latter with an LQT. A local quadratic
approximation of − log p(x|X) from (17) is used as cost on
the state. A quadratic cost on the control u is set to limit forces
or velocities. For an increased precision, this policy can also
be learned using maximum entropy model-based policy search
[26].

Fig. 5b illustrates this policy and shows that this technique
can encode cyclic motions, which would have been difficult to

PIGNATet al.: BAYESIAN GAUSSIAN MIXTURE MODEL FOR ROBOTIC POLICY IMITATION 5

Fig. 4. Mixing imitation and LQT, with the final target specified. (a) Bayesian GMM policy: Time-independent policy learned with the presented method.
(b) LQT policy: Only final state target distribution is specified, which results in a time-dependent policy whose control gains increases along time. The shown
policies are for t ∈ [0, 150]. (c) Combination: The combination is a time-dependent policy. It applies, at the beginning, the imitation policy in zones of high
certainty, and is lightly converging outside. At the end of the task, it becomes more strongly converging all over the states.

Fig. 5. Encoding a limit cycle can be done without any modification of our
approach. (a) Bayesian GMM policy: By only applying this policy, the robot
quickly diverges from the cycle and goes into regions where the policy is
unknown. (b) Conservative policy: This policy forces the robot to go back to
regions where the robot knows the policy, which has a stabilizing function.
(c) Product of policies: The product of the two policies follows the imitated
policy in known regions and converges back to these regions when the robot
is brought outside.

achieve with the previous propositions. We also note that the
combination given by (21) is more complex than the scalar
combination proposed in [25] because it can take into account
that policies may have variable precisions along different axes.

Accompanying Python codes and videos are available at
https://gitlab.idiap.ch/rli/pbdlib-python.

V. EXPERIMENTS

Three experiments are presented to demonstrate that the
proposed approach can be used in a variety of tasks. They
are performed on a 7-axis Panda (Franka Emika) robot.

A. Obstacle navigation

In the first experiment, the robot should navigate through
fixed obstacles from various initial configurations in order to
grasp an object, see Fig. 6-(left). The system is defined with
joint angles x = q as states and joint velocities u = q̇ as
control commands.

In total, 13 demonstrations were recorded (totaling 115
sec of recording). Eight demonstrations were recorded by
starting far from the desired point, showing how to avoid the

obstacles. The five others were only local, providing more
precise demonstrations at the end of the motion, where an
accurate alignment between the gripper and the object to grasp
is required.

We chose to fuse the imitation policy with a LQT conser-
vative policy, converging to the marginal distribution of joint
angles. This conservative policy is similar to the one illustrated
in Fig. 5 for a 2D system. The non-Bayesian policy, as
planned, was quickly diverging and dangerously accelerating
outside of the demonstrated regions of the state space.

While an optimal control/planning approach would require
the modeling of the obstacles and the robot volume, ours
was able to propose a solution robust to a wide range of
starting points, that could be set up intuitively within only
a few minutes. This experiment also illustrates the advantages
of learning a distribution of policies instead of trajectories
as in [4]. The teaching time can be optimized with partial
demonstrations. Moreover, there is no need for an additional
mechanism to realign the demonstrations in time.

B. Vision-based peg-in-hole

In the second task, the robot should insert a peg in a moving
hole by looking from two cameras placed on the side, see
Fig. 6-(center). The center of the red peg and the center of
the blue tube (top part) are extracted by image processing. The
diameter of the peg is 15% smaller than the hole, such that the
task can be solved with an imperfect vision system and without
impedance control. The state is the pixel displacement from
the hole and the peg from the two cameras x =

[
p>
1 ,p

>
2

]>
.

The control command is the Cartesian velocity of the gripper
in robot frame (the orientation was held fixed) u = vee, but
joint angle velocities would have been possible as well, likely
requiring some additional demonstrations.

As an evaluation, the robot was initialized at 10 random
postures (with the peg still being seen by the two cameras).
We evaluated its capacity to insert the peg without touching
the border of the hole or hitting the support (receptacle).
Multiple combinations of policies were used (among imitation,

https://gitlab.idiap.ch/rli/pbdlib-python

6 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED JULY, 2019

Fig. 6. (left) Obstacle navigation with joint velocity controller. (center) Vision-based peg-in-hole with velocity controlled robot. (right) White board wiping
with force controlled robot.

TABLE I
RESULTS OF THE PEG-IN-HOLE TASK WITH DIFFERENT COMBINATIONS OF

POLICIES (IMITATION, OPTIMAL CONTROL (OC) AND CONSERVATIVE
(CS)). THE TASK IS CONSIDERED A SUCCESS IF THE PEG IS IN THE HOLE
WITHOUT TOUCHING THE BORDER, OR WITH A SLIGHT TOUCH THAT DID

NOT DISPLACE THE RECEPTACLE. HITTING THE BORDER OR BEING STUCK
IS CONSIDERED AS A FAILURE.

Policies success rate (10 trials) failure
without touching with touching

Imitation only 0.3 0.1 0.6
Im. + OC 0.4 0.4 0.2
Im. + CS 0.7 0.1 0.2
Im. + CS + OC 0.8 0.1 0.1
OC 0.0 0.1 0.9

conservative and optimal control, as presented in Sec. IV).
The conservative policy was an LQR, similar to the one in the
previous experiment. Instead of converging to the distribution
of known joint angles, this policy acts in pixel space.

Computing this policy requires the dynamic model xt+1 =
f(xt,ut), unknown in this experiment. It is learned by
recording 10 sec of random motions. The relation between
the position of the end-effector xee and the pixel position
of camera i, pi = gi(x

ee), is learned using the method
presented in Sec. III. The Jacobian of gi, which links vee

to pixel velocities, is then used to build a linearized version
of f(xt,ut). Due to observation noise, this approach is more
robust than directly learning f(xt,ut).

The cost for the optimal control policy is defined as the
negative log-likelihood of the distribution of desired final
states, encoded as an MVN. The cost on the state is only active
at the end of the LQT planning horizon, corresponding to the
length of the longest demonstration. This allows variability
during the task and forces convergence at the end of the task.
The cost on u is the negative log-likelihood of the distribution
of control command u during the demonstrations. Results are
reported in Table V-B.

Imitation alone shows the effect of an accumulation of
errors. It often fails if brought far from the known regions of
the state space. It also only slowly stops. Since the obstacles
are neither modeled nor learned, the OC policy results in a
straight line motion to the target (as illustrated in Fig. 4b)
and thus almost always hits the obstacles or the border of the
receptacle. It only works when employed very close to the

goal. It provides good correction in this context when used in
combination with the other policies. The conservative policy
has a relevant effect to converge back to the known regions of
the state space and provide a good improvement of the results.

In this experiment, we are in a similar situation to [3],
where we control the velocity of an object. But as the relation
between end-effector and pixel velocities is not known before-
hand and might change, the approach in [3] is not applicable.

C. Force based board wiping

In the third task, we demonstrate learning of a force policy
within a cyclic motion. The robot has to wipe a board by
applying a force against it while doing circular motions. The
state is composed of the position and linear velocity of the
end-effector (defined at the gripper) in the robot base frame
x=

[
xee>,vee>

]>
. The control command is the force to apply

at the end-effector u = F ee, which is then transformed to
torques with τ = J(q)

>
F ee + c(q, q̇) +g(q), where Coriolis

c and gravity g compensation torques are added. To be able to
record forces during demonstrations, bilateral teleoperation is
used with a second 7-axis Panda robot. The two end-effectors
are linked to each other using a virtual spring-damper system
with a position offset. One demonstration of the circular cyclic
motion is performed, 7 others are performed showing how to
start/recover when not in contact with the board or outside of
the wiping area. As in the first experiment, we used a combina-
tion of the imitation policy and the conservative policy, which
forces convergence to the marginal distribution of position and
velocity. By executing only the imitation policy, the robot is
pressing against the board, applying a very imprecise force
tangentially to the wiping path to compensate for friction. It
diverges quickly from the original path. The applied forces
are quite clumsy (except perpendicularly to the board) and
show a wide variance, which explains the failure of this policy.
The conservative policy alone executes circle-shaped motions
very robustly without applying any force against the board,
resulting in no cleaning, as shown in Fig. 7.

Fusion with full precision matrices as in (21) allows the
imitation policy to be used perpendicularly to the board while
using the conservative policy along the other directions, in
accordance to their respective precisions. The resulting policy
is very robust, even when the user strongly perturbs the robot,
showing that it slowly converges back to the board and to

PIGNATet al.: BAYESIAN GAUSSIAN MIXTURE MODEL FOR ROBOTIC POLICY IMITATION 7

Fig. 7. Comparison of normal forces applied by the robot on the board.
Using the conservative (or stable) policy results in almost no force. Using the
product of policies, the forces are much closer to the recorded ones.

the circular motion before starting wiping. This robustness
and combination of periodic (wiping) and discrete (converging
back to the wiping area) would have been very difficult to
achieve (if not impossible) with trajectory-based or time-
dependent approaches.

VI. CONCLUSION

In this paper, we presented a Bayesian regression technique
with several interesting characteristics for robotic applications.
We applied this technique to the common problem of distri-
butional shift in policy imitation, where the uncertainty can
be exploited for an intelligent fusion of controllers. Many
approaches for learning robotic manipulation tasks impose
structure or restrictions on the policy, which limit their range
of applications. We showed in three distinct experiments that
our approach can be applied without modification to many
state-control systems and to a variety of tasks (discrete or/and
periodic).

Finally, we believe that this method is well suited in an
active learning scenario, which would be investigated in future
work. In such a case, the robot would ask for demonstrations
in unknown regions in order to optimize the learning process.
The efficiency of training and the closed-form predictive
distribution of the proposed method makes it possible to
maximize complex learning criteria.

REFERENCES

[1] S. Ross, G. Gordon, and D. Bagnell, “A reduction of imitation learning
and structured prediction to no-regret online learning,” in Proc. Intl Conf.
on Artificial Intelligence and Statistics (AISTATS), 2011, pp. 627–635.

[2] M. Hersch, F. Guenter, S. Calinon, and A. Billard, “Dynamical system
modulation for robot learning via kinesthetic demonstrations,” IEEE
Trans. on Robotics, vol. 24, no. 6, pp. 1463–1467, 2008.

[3] S. M. Khansari-Zadeh and A. Billard, “Learning stable nonlinear dynam-
ical systems with gaussian mixture models,” IEEE Trans. on Robotics,
vol. 27, no. 5, pp. 943–957, 2011.

[4] A. Paraschos, C. Daniel, J. R. Peters, and G. Neumann, “Probabilistic
movement primitives,” in Advances in Neural Information Processing
Systems (NIPS), 2013, pp. 2616–2624.

[5] M. Laskey, J. Lee, R. Fox, A. D. Dragan, and K. Y. Goldberg, “DART:
Noise injection for robust imitation learning,” in Conference on Robot
Learning (CoRL), 2017, pp. 143–156.

[6] S. Schaal, J. Peters, J. Nakanishi, and A. Ijspeert, “Learning movement
primitives,” in Intl Journal of Robotic Research. Springer, 2005, pp.
561–572.

[7] S. Calinon, D. Bruno, and D. G. Caldwell, “A task-parameterized
probabilistic model with minimal intervention control,” in Proc. IEEE
Intl Conf. on Robotics and Automation (ICRA), 2014, pp. 3339–3344.

[8] C. Finn, S. Levine, and P. Abbeel, “Guided cost learning: Deep inverse
optimal control via policy optimization,” in Proc. Intl Conf. on Machine
Learning (ICML), 2016, pp. 49–58.

[9] A. Rajeswaran, V. Kumar, A. Gupta, G. Vezzani, J. Schulman,
E. Todorov, and S. Levine, “Learning complex dexterous manipulation
with deep reinforcement learning and demonstrations,” Proc. Robotics:
Science and Systems (RSS), 2018.

[10] A. Nair, B. McGrew, M. Andrychowicz, W. Zaremba, and P. Abbeel,
“Overcoming exploration in reinforcement learning with demonstra-
tions,” in Proc. IEEE Intl Conf. on Robotics and Automation (ICRA).
IEEE, 2018, pp. 6292–6299.

[11] H. G. Sung, “Gaussian mixture regression and classification,” PhD
thesis, Rice University, Houston, Texas, 2004.

[12] S. Schaal, C. G. Atkeson, and S. Vijayakumar, “Scalable techniques
from nonparametric statistics for real time robot learning,” Applied
Intelligence, vol. 17, no. 1, pp. 49–60, 2002.

[13] C. E. Rasmussen, “Gaussian processes in machine learning,” in Ad-
vanced lectures on machine learning. Springer, 2004, pp. 63–71.

[14] C. M. Bishop, Pattern Recognition and Machine Learning (Information
Science and Statistics). Secaucus, NJ, USA: Springer, 2006.

[15] K. P. Murphy, “Conjugate Bayesian analysis of the Gaussian distribu-
tion,” University of British Columbia, Tech. Rep., 2007.

[16] M. Roth, On the multivariate t distribution. Linköping University
Electronic Press, 2013.

[17] M. C. Hughes and E. Sudderth, “Memoized online variational inference
for dirichlet process mixture models,” in Advances in Neural Information
Processing Systems (NIPS), 2013, pp. 1133–1141.

[18] L. A. Hannah, D. M. Blei, and W. B. Powell, “Dirichlet process mixtures
of generalized linear models,” Journal of Machine Learning Research,
vol. 12, no. Jun, pp. 1923–1953, 2011.

[19] B. Bahrami, K. Olsen, P. E. Latham, A. Roepstorff, G. Rees, and C. D.
Frith, “Optimally interacting minds,” Science, vol. 329, no. 5995, pp.
1081–1085, 2010.

[20] G. E. Hinton, “Products of experts,” Proc. Intl Conf. on Artificial Neural
Networks (ICANN), pp. 1–6, 1999.

[21] M. J. F. Gales and S. S. Airey, “Product of Gaussians for speech
recognition,” Computer Speech and Language, vol. 20, no. 1, pp. 22–40,
jan 2006.

[22] B. D. Ziebart, A. L. Maas, J. A. Bagnell, and A. K. Dey, “Maximum
entropy inverse reinforcement learning.” in Proc. AAAI Conference on
Artificial Intelligence, vol. 8. Chicago, IL, USA, 2008, pp. 1433–1438.

[23] S. Levine and P. Abbeel, “Learning neural network policies with
guided policy search under unknown dynamics,” in Advances in Neural
Information Processing Systems (NIPS), 2014, pp. 1071–1079.

[24] M. Bohner and N. Wintz, “The linear quadratic tracker on time scales,”
International Journal of Dynamical Systems and Differential Equations,
vol. 3, no. 4, pp. 423–447, 2011.

[25] A. Paraschos, E. Rueckert, J. Peters, and G. Neumann, “Model-free
probabilistic movement primitives for physical interaction,” in Proc.
IEEE/RSJ Intl Conf. on Intelligent Robots and Systems (IROS). IEEE,
2015, pp. 2860–2866.

[26] S. Levine, “Reinforcement learning and control as probabilistic infer-
ence: Tutorial and review,” arXiv preprint arXiv:1805.00909, 2018.

	Introduction
	Related work
	Bayesian Gaussian mixture model conditioning
	Bayesian analysis of multivariate normal distribution
	Bayesian analysis of the mixture model

	Product of policy distributions
	Examples of controllers

	Experiments
	Obstacle navigation
	Vision-based peg-in-hole
	Force based board wiping

	Conclusion
	References

