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Abstract— When collaboration between human users and
robots involves physical interaction, the importance of the safety
issue arises. We propose a method to transfer to robots several
tasks demonstrated by the user through kinesthetic teaching
and subsequently learned using a weighted combination of
dynamical systems (DS). The approach used to encode the
desired skills ensures a safe robot behavior during the task
reproduction, allowing physical interaction with the user who
can employ the manipulator as a tangible interface. By using
a force sensor-less impedance controller with a back-drivable
robot, this concept is exploited in two physical human-robot
interaction (pHRI) scenarios. The first considers an emergency
situation in which the user can stop or pause a task executionby
grasping and moving the robot away from the region of space
associated to the skill. The second studies the possibilityto select
one among several learned tasks and switch to its execution by
physically guiding the robot towards the task region.

I. I NTRODUCTION

The consideration of robots as both manipulators and
actuated interfaces offers new perspective in human-robot
interaction, human-centered robotics and ubiquitous comput-
ing. Such actuated interfaces can have many roles and will
require to merge expertise from various fields of research
such as robot control, haptics and interaction design, whose
respective research advances tend to follow separated tracks.
Haptic interfaces are often considered as input devices and
robots are traditionally viewed as actuators, but in terms of
hardware capabilities, the frontier progressively disappears.
On the one hand, haptic interfaces become stronger, their
workspace get larger, and their passive degrees of freedom
(DOFs) get progressively replaced by actuated DOFs, pro-
viding new movement/recording capabilities. On the other
hand, the recent commercialization of back-drivable, actively
compliant and gravity-compensated redundant manipulators
provides new capabilities in terms of physical interaction.

This work goes towards exploiting these new hardware
and software capabilities by stressing the issues arising when
the robot has to operate in human environments and interact
with non-professional users. The robot will be viewed as
a tangible platform that provides both input and output
capabilities. Instead of considering separated interfaces to
start/stop a task, trigger an emergency signal, or select a
task among a set of learned ones, we take the perspective
that the most straightforward and intuitive communication
medium for such human-robot collaboration is to transmit
the information directly through contact with the robot. It
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Fig. 1. The experimental set-up: a 7 revolute d.o.f. BarrettWAM arm
employed to draw several alphabetical characters on a writing board. The
user can stop the execution of a given task (letter ”A”) and start a different
one (letter ”B”) by grasping the robot and physically guiding it towards the
regions of interest.

is also the fastest way to convey information, similarly to
interaction between human peers. For example, the best way
to prevent a child from touching a hot plate is to grasp and
move his/her arm away, which can be in some situations
faster, safer and more intuitive than using spoken words.
Human-robot collaborative tasks also limit the user to use or
look at external interfaces such as teach pendants or screen
interfaces.

To guarantee safety, vision techniques have been explored
to detect and react to human behaviors, but this task becomes
very difficult for current state-of-the-art real-time tracking
systems when complex occlusions or atypical postures occur.
This is the cases of collaborative working situations, where
the user is close or in contact with the robot. A possible way
to cope with the safety issue is to use external systems that
limit the movements leading to reach the workspace, velocity
or other limits of the robot, or to use attractive or repulsive
fields [1]–[5]. Our approach allows to avoid the use of such
additional systems.

We assume that the desired tasks to be learnt and ac-
complished by the robot can be represented as a set of
movements of its tip in the Cartesian space. The illustrative
task presented in this work consists in learning how to draw



the alphabetic characters ”A” and ”B” on a board, see Fig. 1.
By using back-drivable and gravity-compensated lightweight
arms, such tasks can be easily transferred through kinesthetic
teaching.

Then, during task execution, the user is given the possi-
bility to decide when to start, stop, pause, resume and select
the execution of a particular skill by physically guiding the
robot towards or away from the region of the desired letter.

As the way skills and movements are represented has
big relevance, research in robot learning by imitation and
exploration has recently expressed a strong interest towards
the use of compact and flexible models of continuous motion
based on a superposition of elementary motion elements. The
inspiration behind these works comes from various research
areas such as machine learning, control theory and biology.
In machine learning, the idea of approximating a non-linear
function through a mixture of simpler linear elements has
led to systems based on local Gaussian representation [1],
[6] or based on several layers of dynamical systems [7].

In this work a task is described as a weighted superposition
of basis motion fields or local flow fields, see e.g. [1], [2],
[7]–[9]. The main contribution consists in a method used to
modulate locally the intensity of each flow field by using
a suitable weight rescaling mechanism. As result, motion
commands will be present only in the area of the robot
workspace covered by the demonstrations and smoothly fade
outside these. Then the user can physically guide the robot
inside or outside such regions as desired. We achieve this
by modifying the standard Gaussian Mixture Model (GMM)
weighting scheme [9], [10] depicted in Fig. 2, to make each
weight independent from the others. Namely the activation
function is defined by using the parameters of thek-th
Gaussian component only. This helps the system to cope with
the problems arising when task reproduction is required in
undiscovered regions. Since the training data-set is small, the
generalization capabilities of the motion primitives, in terms
of position and speed, can ensure good performance only in
the regions of the demonstrations.

Each local flow field is represented by an autonomous
system (not indexed by time) based on a superposition of
affine subsystems that creates a motion flow field guiding
the robot movements. Thek-th affine subsystem is defined
asẋ = Ak x+bk, with x andẋ indicating, respectively, the
Cartesian position and velocity.1

II. RELATED WORK AND PROPOSED APPROACH

Early works in robot learning by imitation considered
imitation as a two-steps process, where an expert user first
provided demonstrations (sometimes in a different environ-
ment than the robot’s actual location) by wearing visual
markers, exoskeletons or data-gloves. The collected data
were then processed off-line to build an appropriate mapping
for the reproduction of the skill on the robot, see [12]

1In general, an augmented robot state can be employed, and other
variables such as joint angles, or generalized forces can beconsidered, see
e.g. [11].
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Fig. 2. Movements encoding with different weighting schemes to combine
a set of basis motion fields. (a): demonstrations of the task of drawing the
letters ”d” and ”s”; (b): reproduction of the tasks using weights computed
with the proposed method; (c): reproduction of the same tasks with a
standard GMM weighting mechanism. Color intensity represents the weight
amplitude and arrows indicate direction and intensity of the velocity field.

for a review of several Programming by Demonstraion ap-
proaches. The work in [9] explores the possibility to encode
tasks as globally asymptotically stable DS, with the approach
called Stable Estimator of DS (SEDS). In [13] the method
is adapted to optimize separately the direction and intensity
of the learned flow field, in order to reach a target with a
desired velocity.

Several rescaling techniques have been proposed to mod-
ulate the contribution of each subsystem to the overall robot
motion. Usually the contribution of each motion primitive
is suitably modulated in order to adapt the motion to goal
variations and collision avoidance [2], along with suppression
of unwanted movements in the null space [4] or avoidance
of joint limits reaching [3].

These works consider scenarios in which goal modifica-
tions arise during the movements execution. Such variations
have to be explicitly described either before each reproduc-
tion or should be directly measured. In both cases a suitable
signal has to be specifically generated to detect and react to
the perturbation. Another way to cope with safety in pHRI
is to consider interaction control techniques, as in [14]–[16],
along with pre-collision strategies [17].

In this paper we focus on active safety. As result to the
perturbations introduced in the robotic system by the user,
the robot should keep the execution of stable motions and
show a compliant behavior, letting him/her move easily the
tip.

In the following we will refer to task regions as particular
portions of the task space covered by skill demonstrations
and to subsystem as a particular movement primitive, de-
scribing the robot movement in the relative task region. Our
method allows easy and rapid estimation of the model param-
eters needed to generalize the skill across the demonstrations



and automatically extracts adequate stiffness and damping
parameters from covariance information, as done in [6].

In this work we consider that goal modifications, intended
as a desired start/stop of a movement or change in target
motion, can occur during the execution of a task. Such
modifications arise with two possible modalities. In the
first case the user wishes to transit from the execution
of a movement into a gravity compensation control mode
(absence of motion). In the second case the execution of a
different skill is desired and realized either after the transition
to a state of pure gravity compensation or not.

The experiment shown in Fig. 1 presents the desired
switching from the execution of task ”A” to ”B” through an
intermediate pause with no movement. We propose a method
that does not require the generation of a signal to detect such
perturbations (user physically guiding the robot during task
execution) since these, when present, automatically influence
the weight of each motion primitive, as shown in Fig. 3-b.
The user will then be allowed to execute this goal switching
by grasping the robot and moving it towards the region of
space of another desired task. In addition, any desired pause
during a task execution can be realized by the user by just
moving the robot to undiscovered regions of its workspace.
In this case all the motion commands fade away smoothly
and the robot remains still, using only gravity compensation,
in the configuration where it was placed.

III. D ESCRIPTION OF THE SYSTEM

The proposed system iteratively estimates a desired Carte-
sian velocity command̂̇x with a mixture ofK linear sub-
systems

ˆ̇x =

K
∑

k=1

h∗

k(x) (Ak x+ bk), (1)

wherex, ẋ and bk ∈ R
3; Ak ∈ R

3×3 and h∗

k(x) is the
scalar weight associated to thek-th motion primitive or local
velocity field.

Several weighting schemes have been employed so far,
including Dynamic Movement Primitives [7], [18], GMMs
[9], [10] and Hidden Markov Models (HMMs) [1], [19], [20].
In the case of GMMs, thek-th mixing weighthGMM

k (x) ∈
[0, 1] is defined as

hGMM
k (x) =

hk(x)
K
∑

i=1

hi(x)

=
N (x; µk,Σk)
K
∑

i=1

N (x; µi,Σi)

, (2)

where the scalar termN (x; µk,Σk) indicates the likelihood,
at pointx, of the k-th d-dimensional multivariate Gaussian
distribution with mean vectorµk and covariance matrixΣk,

hk(x) =
1

(2π)d/2|Σk|1/2
exp

(

−
1

2
(x−µk)

>Σ−1

k (x−µk)
)

.

(3)
The use of the weights in (2) is not always advantageous

in portions of space that have not been covered by the
demonstrations. In fact, such a formulation forces at least

(a) (b)

Fig. 3. (a): Demonstrations of the desired skills. The gray dots indicate the
starting points of the trajectories (above: front view; bottom: top view). The
parameters of a GMM with 18 components; their color can be compared
with the color of the weights in the figure (b) on the right. (b): Evolution
of the weights used to combine different motion primitives during the
experiment using the proposed method. When the user moves the tip away
from the task region (during the interaction phase, blue line) and releases it,
all the weight have a null value causing the absence of motioncommands
to the robot end-effector.

one of the primitives to be active anywhere in the robot’s
workspace. This may result in the presence of undesired
movements outside the task regions, where, in addition, high
velocity may arise.

The weight definitionh∗

k(x) ∈ [0, 1] that we suggest in
this paper differs from the standard one used for GMMs:

h∗

k(x) =
h

′

k(x)

hmax
k

=
N (x; µk,Σ

∗

k)

N (µk; µk,Σ
∗

k)
, Σ∗

k = cΣk. (4)

It makes each weight independent from the others, unlike
the formulation in (2). A visual representation of the GMM
learned from the collectedN data points is depicted in Fig.
3-a. The constant scalar rescaling factorhmax

k corresponds
to the maximum value of the distribution, computed at
the meanµk. It is important to notice that, as defined
in (4), the rescaling factorshmax

k depend only upon the
parametersµk andΣk, which have been learnt previously
from the demonstrations. Therefore it is possible to obtain
the rescaling parametershmax

k without the need of additional
parameters to be learnt.

The difference between the two approaches is depicted in
Fig. 2 with an illustrative example of a movement to draw
the alphabet letters ”d” and ”s”. The mechanism employed
to switch across the different parts of the letters influences
the capability of the robot to learn and reproduce the desired
tasks while keeping a safe behavior during its employment.
Computing the weights as proposed in (4) can ensure safety
by keeping good generalization performances in the task
regions and by fading the motion outside these.

The proposed technique forces all weightsh∗

k(x) to have a
value that approaches to zero when the robot moves towards
regions not belonging to the learned task, as shown in Fig.
3-b. Thus, there will be no movement if the reproduction
starts in or reaches undiscovered areas.This happens when
the numeratorhk(x) in (4) approaches to a null value
according to an exponential mapping of the distance between
the vectorsx and µk. The weightsh∗

k(x) approaches the
value of one when the tip position is close to the centers
µk. In such a case, by assuming that the different Gaussian



components have a limited overlapping, only thek-th motion
primitive will contribute to the motion command.2

The regularization process for the varianceΣ∗

k in (4)
achieves a suitable overlapping of the Gaussian components
by using the factorc, which is set to minimize the quantity

L∗ =
N
∑

i=1

K
∑

k=1

[

h∗

k(x(i)) − 1
]2
. (5)

This criterion tries to retrieve the original property of the
GMM weighting scheme,

∑K
k=1

h∗

k(x) = 1, by providing
independent activation weights.

It is important to notice that the patterns of the weights
h∗

k(x) and hGMM
k (x), used respectively at run-time and

during the GMM training phase, are different. In fact,h∗

k(x)
reaches its maximum value of one only in correspondence
of the meanµk, while hGMM

k (x) keeps a unitary value for a
given duration. This would result in an undesired temporary
reduction of the motion command amplitude during the usage
of the robot. In addition, during the switching phase between
two components, both the associated weightsh∗

k(x(t)) and
their sum

∑K
k=1

h∗

k(x(t)) may have values being much
lower than one. This would result in a unwanted temporary
decrease of the motion command amplitude.

By using (1) and (4), an acceleration commandˆ̈x

ˆ̈x =
K
∑

k=1

h∗

k(x)
(

−(x−µk)
>Σ−1

k

(

Ak x+bk

)

ẋ+Ak ẋ
)

(6)

is used to drive the robot. The analytical derivation of the
desired velocity and acceleration allows the definition of
smooth trajectories to be used by the impedance controller
described in the next section. The desired position trajectory
is computed by numerical integration of the velocity and
acceleration commands

x̂(t) ≈ x(t− 1) + ∆t
ˆ̇x(t− 1) +

1

2
∆t

2 ˆ̈x(t− 1) (7)

by using the constant control loop period∆t.

IV. EXPERIMENTS

A. Experimental set-up and control architecture

The experimental set-up used to validate the proposed
approach uses the 7 revolute d.o.f. Barrett WAM arm shown
in Fig. 1. The skills are represented in task space, considering
only Cartesian position information. During the experiment,
in both the phases of demonstration and reproduction, the
control loop period is set to 10 [mS] and the orientation
of the end-effector is actively kept constant. The actual
displacementx of the tip is estimated by measuring the joint
anglesq ∈ R

7 and using forward kinematics; the actual tip
velocity ẋ and acceleration̈x are computed by numerical
derivation with suitable low-pass filtering.

Equations (7), (1) and (6) describe the computation of
the desired Cartesian position, velocity and acceleration

2Note that we can also regulate this overlapping by regularizing the full
covariance matrices and/or the values in their diagonal by amultiplication
factor .

(a) (b)

Fig. 4. (a): robot tip position during a simulated experiment with standard
GMM weights (above: front view; bottom: top view). (b): tip position during
the experiment by using the proposed rescaling technique.

trajectories needed by a task space impedance controller. The
joint-space reference model is described as

B(q) q̈+C(q, q̇) q̇+ g(q) + ε(q, q̇) = τ + τ ext, (8)

where B,C ∈ R
7×7 and g, ε, τ , τ ext ∈ R

7 account for
the inertia matrix, Coriolis and centrifugal terms matrix,
gravitational torques, unmodeled non linearities (staticand
viscous friction at joint level), motor torques and external
torques. We consider the motor torque vector as the control
input and the external torques generated from the physical
interaction between the environment, including the user, and
the robot. The required dynamic and kinematic parameters
are provided with the robot.

We design an interaction controller to obtain an adjustable
closed-loop dynamic behavior of the relation between the
external Cartesian forcesFext applied to the tip and its
motion. The redundancy of the robot also allows interaction
with its null space, which does not actually interfere with
the task space tip dynamics if the proposed controller is
employed.

We proceed with the derivation of the robot model de-
scribed in task space coordinates, see [8] for details. Com-
puting the analytical JacobianJ(q), with an Euler angles
minimal representation of the tip orientation, and substituting
ẍ = J(q) q̈+ J(q) q̇ andτ ext = J(q)> Fext in (8) leads to
the model

Λ(x) ẍ + µ(x, ẋ) ẋ+ Fg(x) = Fτ + Fext. (9)

We use the control input

Fτ = Fg(x)+Λ(x) ẍd+µ(x, ẋ) ẋd−Kp x̃−Dd
˙̃x, (10)

which is mapped in joint torques as

τ = J(q)> Fτ = g(q)+

+ J(q)>
(

Λd ẍd + µ(x, ẋ) ẋd −Kp x̃−Dd
˙̃x
)

.
(11)



The desired inertia matrixΛd is chosen to be equal to
the robot inertiaΛ(x), in order to avoid the use of external
forces sensor, which leads to the desired closed loop behavior

Λ(x) ¨̃x+ (µ(x, ẋ) +Dd) ˙̃x+Kp x̃ = Fext. (12)

xd = x̂, x̃ = xd − x, ˙̃x and ¨̃x represent, respectively, the
desired position and the position, velocity and acceleration
tracking errors. Note that, since the desired inertia matrix is
configuration dependent, the Coriolis and centrifugal terms
should also be considered in (12) to fulfill the skew symmetry
property of the matrixΛ̇(x)− 2µ(x, ẋ) and the passivity
of the system in the regulation case.3 Dd and Kp are
symmetric and positive definite matrices representing the
desired damping and stiffness. A constant and diagonal
damping matrix is used. The stiffness matrix is chosen to
be constant with values computed according to a trade-
off between tracking performance and required compliance.
An additional requirement is that the relationKp x̃ should
represent a passive mapping from the velocity error˙̃x to the
external forcesFext in order to ensure the stability of the
system in both the cases of interconnection with a passive
environment and in free motion.

B. Experimental results

The experiments carried out consist of two phases. In the
first phase shown in Fig. 3, several demonstrations of the two
tasks to be learnt are supplied through kinesthetic teaching.
These are represented by the drawing of the alphabetic
characters ”A” and ”B” on a board, as shown in Fig. 1.
During the demonstrations, the robot is controlled only with
gravity compensation torquesτ = g(q) and, given its high
back-drivability, the user can easily move it with low effort.

At the end of this phase the GMM parameters
{µk,Σk}Kk=1

are estimated by Expectation-Maximization
method [2], [5], see Fig. 3-a, showing the learnt 18 Gaussian
components.4 The computation of the motion primitives’
parameters{Ak,bk}Kk=1

is carried out for each component
using a weighted least-squares method. This considers the
position and velocity data collected during the demonstra-
tions and the weight computed off-line according to (4) and
relative to the same positional data.

In the reproduction phase, the impedance controller is ac-
tive to perform trajectory tracking with and without external
forces applied to the tip.

Fig.4-a shows a simulated experiment with the standard
GMM formulation described in (3) and (2). In this simulated
scenario, the user grasps the tip, moves it far away from the
task region (with a non-negligible effort, since a motion com-
mand is always present). The learned skill is reproduced in

3See [18] for further details and proof of closed loop stability.
4The number of components is set empirically, by visual inspection, in

order to reach a good trade-off between the model complexityand fit of
the data. A well-known drawback of Gaussian Mixture Models is that the
optimal number of component may not be known beforehand. Alternative
solutions exists, such as involving the use of information theory methods,
e.g. the Bayesian Information Criterion (BIC) or information relative to the
trajectory curvature that exploit the continuous properties of human body
movements, as discussed in previous work of ours [12].
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Fig. 5. Plot of the desired and actual trajectories of the end-effector velocity
(left) and acceleration (right). During the interaction phase, the robot can
either stand still or be moved by the user; in both the cases the motion
commands tend to fade and all the control torques, except theones needed
for gravity compensation and orientation tracking, are null. The presence
of motion outside the task regions is due uniquely to the forces applied by
the user.

undiscovered regions, which may lead to undesired motion,
possibly reaching the workspace and velocity limits. Because
of this risk, we preferred not to carry out any experiment
with the real robot for safety reasons by using this weighting
scheme.

Then, we present experimental data relative to the use of
the proposed method. The experiment consists in showing
how moving the robot towards one of the multiple learned
tasks can be used as simple mean to select which one of
them to reproduce. As depicted in Fig. 4-b, the robot starts
the reproduction of the skill by drawing the ”letter A” and the
user interrupts the task by moving the robot away from the
region of the task. The robot shows high compliance, thus
allowing the user to employ low effort, while the velocity
and acceleration commands are forced to smoothly fade
before a complete stop occurs (when the tip is released).
Fig. 3-b shows the value of the weights, that tends to zero
during the interaction phase. Further data collected during
the experiment is shown in Fig. 5, where the time plots
of the desired and actual trajectories for position, velocity
and acceleration of the robot are depicted. The difference
between the actual and desired velocity during the interaction
phase is caused by the user who moves the tip. When
released outside the task region, the desired velocity and
accelerations are null and the robot is controlled in pure
gravity compensation mode.



The user can then decide which particular task to perform
by manually moving the robot towards the region of space
relative to the other task, drawing the alphabetic character
”B”. The robot smoothly converges to the execution of such
a task as shown in Fig. 4-b.

A good tracking capability, in terms of position, velocity
and acceleration error, of our model-based control system is
shown in the experiments in Fig. 5. This suggests that our
knowledge of the dynamic model of the robot is consistent
with the requirements of our application and there is no
pressing need for a robust controller accounting for model
uncertainty.

A video of the experiments accompanies this paper and is
also available athttp://programming-by-demonstration.org.

V. CONCLUSIONS

We proposed an approach to ensure safe pHRI during the
reproduction of several learned tasks by using the robot as
a bilateral tangible interface. Our perspective is to view the
robot not only as an output device reproducing a learned
skill, but also as an input device allowing interactions with
the user during the execution of a task, with the aim to
influence the robot’s actions.

We showed through experiments that reformulating the
weights in GMMs as being independent could be helpful
in pHRI scenarios.

In the first scenario the user can stop or pause a task,
by pushing or pulling the robot arm away from the relative
region. In this case, the motion command applied to the tip
fades as the robot is moved away, with a resulting compliant
behavior. The second example shows that the user can select
the task to be executed by physically guiding the towards the
relative region, thus providing a simple and intuitive mean
for the user to modify and control the robot behavior in a
safe manner and without relying on any external interface.

In future works, the proposed method can be applied
in more complex pHRI scenarios if force measures are
available. This would allow encapsulating forces in the task
description and could contribute to rescaling the weights
for the motion/force primitives. We plan in future work to
consider incremental kinesthetic teaching scenarios, such as
in [21], to allow the user to gradually refine a learned skill
without interrupting its execution. During the reproduction,
the user would have the opportunity to grasp one part of the
robot and locally modify the learned movement. After releas-
ing the arm, the robot would then continue the execution of
the skill by updating its model of the movement accordingly.
Such interaction would allow the user to scaffold the robot’s
learning of the skill in an intuitive and efficient manner.
The operational space formulation proposed in [8] can be
adopted to improve the desired tracking performances as well
as to employ robot motion in its null space in order to avoid
undesired collisions with the user or the environment.
In addition, strategies for the avoidance of any unwanted
collision during the interaction phase can be considered, as
done in [17], if tracking of the user position is available.
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