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Abstract—When collaboration between human users and
robots involves physical interaction, the importance of tle safety
issue arises. We propose a method to transfer to robots sewr
tasks demonstrated by the user through kinesthetic teachip
and subsequently learned using a weighted combination of
dynamical systems (DS). The approach used to encode the
desired skills ensures a safe robot behavior during the task
reproduction, allowing physical interaction with the user who
can employ the manipulator as a tangible interface. By using
a force sensor-less impedance controller with a back-drivale
robot, this concept is exploited in two physical human-robb :
interaction (pHRI) scenarios. The first considers an emergecy
situation in which the user can stop or pause a task executiooy
grasping and moving the robot away from the region of space
associated to the skill. The second studies the possibility select
one among several learned tasks and switch to its executioryb
physically guiding the robot towards the task region.

I. INTRODUCTION

The consideration of robots as both manipulators an|
actuated interfaces offers new perspective in human-robot
interaction, human—centel’ed I’ObOtiCS and ubiquitOUS (Iﬂmp Fig. 1. The experimenta| set-up: a 7 revolute d.o.f. Barvé&M arm
ing. Such actuated interfaces can have many roles and wathployed to draw several alphabetical characters on angrtipard. The
require to merge expertie from various fields of researdffe ¢ S e execuon o guen e (eter ) st cieret
such as robot control, haptics and interaction design, @hoggions of interest.
respective research advances tend to follow separatddstrac
Haptic interfaces are often considered as input devices and
robots are traditionally viewed as actuators, but in terins o

. : ; . is also the fastest way to convey information, similarly to
hardware capabilities, the frontier progressively disgp. . .
S interaction between human peers. For example, the best way
On the one hand, haptic interfaces become stronger, their . ) )
) . 0 _prevent a child from touching a hot plate is to grasp and
workspace get larger, and their passive degrees of freedom

(DOFs) get progressively replaced by actuated DOFs, pr(];r)r]ove his/her arm away, whl_ch can be in some situations
- : aster, safer and more intuitive than using spoken words.
viding new movement/recording capabilities. On the oth

1§ . -
2 . . eI—|uman-robot collaborative tasks also limit the user to use o
hand, the recent commercialization of back-drivableyvabi

. : . look at external interfaces such as teach pendants or screen
compliant and gravity-compensated redundant manipator P

' A o . interfaces.
provides new capabilities in terms of physical interaction . ,
This work goes towards exploiting these new hardware To guarantee safety, vision techniques have been explored
and software capabilities by stressing the issues arishanw to detect and react to human behaviors, but this task becomes

the robot has to operate in human environments and interd@"y difficult for current state-of-the-art real-time tkarg
with non-professional users. The robot will be viewed aSYStems when complex occlusions or atypical postures occur

a tangible platform that provides both input and outpuThiS is the cases of collaborative working situations, weher

capabilities. Instead of considering separated intesfaoe the user is close or in contact with the robot. A possible way

start/stop a task, trigger an emergency signal, or selectt_%i cope with the safety igsue is to use external systems t_hat
task among a set of learned ones, we take the perspectlifBit the movements leading to reach the workspace, vglocit
that the most straightforward and intuitive communicatio" Other limits of the robot, or to use attractive or repuasiv
medium for such human-robot collaboration is to transmit€!ds [1J-[5]. Our approach allows to avoid the use of such
the information directly through contact with the robot. It2dditional systems.
We assume that the desired tasks to be learnt and ac-

The authors are with the Department of Advanced Roboticsgomplished by the robot can be represented as a set of
Istituto Italiano di Tecnologia, via Morego, 30, 16163 Gemo . .. . . .
Italy. {antonio. pi stillo, sylvain.calinon, mMovements ofits tipin the Cartesian space. The illusteativ

darwi n.caldwel | }@it.it. task presented in this work consists in learning how to draw




the alphabetic characters "A” and "B” on a board, see Fig. 1.
By using back-drivable and gravity-compensated lightiveig
arms, such tasks can be easily transferred through kinesthe
teaching.

Then, during task execution, the user is given the possi-
bility to decide when to start, stop, pause, resume andtselec
the execution of a particular skill by physically guidingeth
robot towards or away from the region of the desired letter.

As the way skills and movements are represented has
big relevance, research in robot learning by imitation and
exploration has recently expressed a strong interest tswvar
the use of compact and flexible models of continuous motion
based on a superposition of elementary motion elements. The §
inspiration behind these works comes from various research §
areas such as machine learning, control theory and biology.
In machine learning, the idea of approximating a non-linear
function through a mixture of simpler linear elements has ©
led to systems based on local Gaussian representation [H#if. 2. Movements encoding with different weighting schermecombine
[6] or based on several layers of dynamical systems [7]. a set of ?asis ryryl(’)fion fields. (a): demonstrations of the tédskawing the

. i . . " . letters "d” and "s”; (b): reproduction of the tasks using gleis computed

In this work a task is described as a weighted superpositiQfh the proposed method; (c): reproduction of the samestasith a
of basis motion fields or local flow fields, see e.g. [1], [2]standard GMM weighting mechanism. Color intensity repneséhe weight
[7]_[9]_ The main contribution consists in a method used tBmphtude and arrows indicate direction and intensity @ @elocity field.
modulate locally the intensity of each flow field by using
a suitable weight rescaling mechanism. As result, motion i , i
commands will be present only in the area of the robdP! @ review of several Programming by Demonstraion ap-

workspace covered by the demonstrations and smoothly faBE?aches. The work in [9] explores the possibility to encode
outside these. Then the user can physically guide the ro ks as globally asymptotically stable DS, with the apgioa

inside or outside such regions as desired. We achieve tiﬁglled Stable Estimator of DS (SEDS). In [13] the method

by modifying the standard Gaussian Mixture Model (GMM)'S adapted to optimiz.e separately the direction and inuyensi
weighting scheme [9], [10] depicted in Fig. 2, to make eacﬂf the learned flow field, in order to reach a target with a

weight independent from the others. Namely the activatiofieSired velocity. _
function is defined by using the parameters of theh Several rescaling techniques have been proposed to mod-

Gaussian component only. This helps the system to cope wigi@te the contribution of each subsystem to the overall robo
the problems arising when task reproduction is required iietion. Usually the contribution of each motion primitive
undiscovered regions. Since the training data-set is sthall IS Suitably modulated in order to adapt the motion to goal
generalization capabilities of the motion primitives, émrhs ~ variations and collision avoidance [2], along with suppres
of position and speed, can ensure good performance only § Unwanted movements in the null space [4] or avoidance
the regions of the demonstrations. of joint limits reachlng [3]. o . 3y
Each local flow field is represented by an autonomous 1h€S€ works consider scenarios in which goal modifica-
system (not indexed by time) based on a superposition §Pns arise during the movements execution. Such varigtion
affine subsystems that creates a motion flow field guidin@ave to be epr|C|tI_y described either before each repro_duc
the robot movements. Thieth affine subsystem is defined tion or should be directly measured. In both cases a suitable

asx = A, x+ by, with x andx indicating, respectively, the signal has to be specifically generated to detect and react to
Cartesian position and velocity. the perturbation. Another way to cope with safety in pHRI

is to consider interaction control techniques, as in [146}
Il. RELATED WORK AND PROPOSED APPROACH along with pre-collision strategies [17].

) . . . In this paper we focus on active safety. As result to the
_ Early works in robot leaming by imitation considered, oy, hations introduced in the robotic system by the user,
imitation as a two-steps process, where an expert user fitgh 5ot should keep the execution of stable motions and
provided demonstrations (sometimes in a different environ, v a compliant behavior, letting him/her move easily the
ment than the robot's actual location) by wearing visual,
markers, exoskeletons or data-gloves. The collected dataIn the following we will refer to task regions as particular

were then processed off-line to build an appropriate mapp"]aortions of the task space covered by skill demonstrations

for the reproduction of the skill on the robot, see [12]and to subsystem as a particular movement primitive, de-

N scribing the robot movement in the relative task region. Our
In general, an augmented robot state can be employed, ared oth hod all d id . . fth del
variables such as joint angles, or generalized forces catoh&idered, see method allows easy and rapid estimation of the model param-

e.g. [11]. eters needed to generalize the skill across the demowsisati




and automatically extracts adequate stiffness and dampi Demonstrations ! n
parameters from covariance information, as done in [6]. _.| % & o, I
i<d L -l

In this work we consider that goal modifications, intendelé;’j

as a desired start/stop of a movement or change in tar¢ = .. -y PP |

motion, can occur during the execution of a task. Suc—" —————— ‘\f‘

modifications arise with two possible modalities. In the. @@2P D } ;'\J'M

first case the user wishes to transit from the executic ™ e « « & o v ¢ v o o o WM w ‘

of a movement into a gravity compensation control mod. z1fm] o

(absence of mation). In the second case the execution of a @)

different skill is desired and realized either after th@$iion  Fig. 3. (a): Demonstrations of the desired skills. The gratsdndicate the
to a state of pure gravity compensation or not. starting points of the trajectories (above: front view;tbot: top view). The

- . . . rameters of a GMM with 18 components; their color can bepaoed
The experiment shown in Fig. 1 presents the des"ﬂmh the color of the weights in the figure (b) on the right.:(Byolution

switching from the execution of task "A” to "B” through an of the weights used to combine different motion primitivesridg the

intermediate pause with no movement. We propose a meth@xperiment using the proposed method. When the user moeefptaway

ihat does not require the generaton of a signal 1o etets sufy " 542901 (rm ne iercton prase, oo s«

perturbations (user physically guiding the robot duringkta to the robot end-effector.

execution) since these, when present, automatically indeie

the weight of each motion primitive, as shown in Fig. 3-b.

The user will then be allowed to execute this goal switchingn€ of the primitives to be active anywhere in the robot's

by grasping the robot and moving it towards the region oftorkspace. This may result in the presence of undesired

space of another desired task. In addition, any desiredepaugovements outside the task regions, where, in additiot, hig

during a task execution can be realized by the user by jugglocity may arise.

moving the robot to undiscovered regions of its workspace. The weight definitionz (x) € [0,1] that we suggest in

In this case all the motion commands fade away smoothipis paper differs from the standard one used for GMMs:

gnd the ropot rer_nains still, gsing only gravity compensatio ) h;c(x) N(x; g, 1)

in the configuration where it was placed. hi(x) = o = : -,
hk N(:u’kv Ky, zk)

It makes each weight independent from the others, unlike
The proposed system iteratively estimates a desired Cartie formulation in (2). A visual representation of the GMM
sian velocity command with a mixture of K linear sub- learned from the collected’ data points is depicted in Fig.

S = e (4)

IIl. DESCRIPTION OF THE SYSTEM

systems 3-a. The constant scalar rescaling fackgt®® corresponds
. K . to the maximum value of the distribution, computed at
X:th(x) (Agx +by), @) the meanpu,. It is important to notice that, as defined
k=1

in (4), the rescaling factor&”** depend only upon the
wherex, x andb;, € R3; A, € R3*® and hj(x) is the parameterg, and X, which have been learnt previously
scalar weight associated to theh motion primitive or local from the demonstrations. Therefore it is possible to obtain
velocity field. the rescaling parametek§'** without the need of additional
Several weighting schemes have been employed so faarameters to be learnt.

including Dynamic Movement Primitives [7], [18], GMMs  The difference between the two approaches is depicted in
[9], [10] and Hidden Markov Models (HMMs) [1], [19], [20]. Fig. 2 with an illustrative example of a movement to draw
In the case of GMMs, thé-th mixing weighth&M (x) € the alphabet letters "d” and ”s”. The mechanism employed

[0,1] is defined as to switch across the different parts of the letters influsnce
the capability of the robot to learn and reproduce the ddsire
oM hi(x) N(x; g, Zk) tasks while keeping a safe behavior during its employment.
h (x) = e =K ) ) Computing the weights as proposed in (4) can ensure safety
SThi(x) S N(x; py, X0) by keeping good generalization performances in the task
=1 =1

regions and by fading the motion outside these.
where the scalar teriv (x; p,,, 3;) indicates the likelihood,  The proposed technique forces all weight$x) to have a
at pointx, of the k-th d-dimensional multivariate Gaussianvalue that approaches to zero when the robot moves towards
distribution with mean vector,, and covariance matri¥X;, regions not belonging to the learned task, as shown in Fig.
3-b. Thus, there will be no movement if the reproduction
1 1 -1 starts in or reaches undiscovered areas.This happens when
(2m)4/2| %, |1/2 eXp (_§(X_/Lk) k (X_“k))' the numeratorh,(x) in (4) approaches to a null value
(3) according to an exponential mapping of the distance between
The use of the weights in (2) is not always advantageouke vectorsx and u,. The weightsh}(x) approaches the
in portions of space that have not been covered by thelue of one when the tip position is close to the centers
demonstrations. In fact, such a formulation forces at leagt,. In such a case, by assuming that the different Gaussian

hk (X) =



components have a limited overlapping, only thth motion —Simul. Reprod. ——Reprad.
L . . . —— Simul. Reprod. during pHRI| | —— Reprod. during pHRI
primitive will contribute to the motion commartd. Demonstrations Demonstrations

0.7

The regularization process for the varianBg in (4)

achieves a suitable overlapping of the Gaussian componen 06 /\
by using the factor, which is set to minimize the quantity = °° 0s
& 04 0.4 C
N K
L =337 (@) ~1)° (5) ” / ) \
i=1 k=1 * N ’
0.65 0-"7/‘.) e

This criterion tries to retrieve the original property ofeth
GMM weighting schemeEkK:1 hi(x) = 1, by providing
independent activation weights.

It is important to notice that the patterns of the weights
hi(x) and h$MM(x), used respectively at run-time and
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during the GMM training phase, are different. In fak},(x) @1[m] x1[m]
reaches its maximum value of one only in correspondence @ ()

OT the mear_uk’ Wh_lle thMM(X) ke_eps a umtary value for a Fig. 4. (a): robot tip position during a simulated experitneith standard
given duration. This would result in an undesired temporangmm weights (above: front view; bottom: top view). (b): tipsition during
reduction of the motion command amplitude during the usagke experiment by using the proposed rescaling technique.

of the robot. In addition, during the switching phase betwee

two components, both the associated weigtjigx(t)) and _ _ _

their sum Zszl hi(x(t)) may have values being much frajectories needed byatask_space w_npedance contrdfler. T
lower than one. This would result in a unwanted temporard@int-space reference model is described as

decrease of the motion command amplitude. N N N
By using (1) and (4), an acceleration command Bl@)d+Claa)a+el@ +e(adq) =71+, (8)

K where B,C € R™7 andg,e, T, Te: € RT account for
X = ZhZ(X)(—(X—Mk)TE,ZI(Ak x+by)X+Ay X) (6) the inertia matrix, Coriolis and centrifugal terms matrix,
k=1 gravitational torques, unmodeled non linearities (statid
is used to drive the robot. The analytical derivation of thyiscous friction at_ joint level), motor torques and extdrna

torques. We consider the motor torque vector as the control

desired velocity and acceleration allows the definition o] )
smooth trajectories to be used by the impedance controllBfPut and the external torques generated from the physical

described in the next section. The desired position trajgct Nteraction between the environment, including the used, a
is computed by numerical integration of the velocity andhe robo_t. The_reqwred dynamic and kinematic parameters
acceleration commands are provided with the robot.

1 We design an interaction controller to obtain an adjustable
X(t) =x(t—1)+Ax(t—1)+ 3 A2%(t—1) (7) closed-loop dynamic behavior of the relation between the
external Cartesian forceF.,; applied to the tip and its

by using the constant control loop peridd. motion. The redundancy of the robot also allows interaction
IV. EXPERIMENTS with its null space, which does not actually interfere with
' the task space tip dynamics if the proposed controller is

A. Experimental set-up and control architecture employed.

The experimental set-up used to validate the proposedWe proceed with the derivation of the robot model de-
approach uses the 7 revolute d.o.f. Barrett WAM arm showscribed in task space coordinates, see [8] for details. Com-
in Fig. 1. The skills are represented in task space, conegler puting the analytical Jacobiali(q), with an Euler angles
only Cartesian position information. During the experimen minimal representation of the tip orientation, and subttiy
in both the phases of demonstration and reproduction, the= J(q) § + J(q) g andr.,; = J(q)" Fe.¢ in (8) leads to
control loop period is set to 10 [mS] and the orientationhe model
of the end-effector is actively kept constant. The actual
displacemenk of the tip is estlmate_d by measuring the joint A(X) % 4 p(x,%) X 4+ Fg(x) = Fr + Feyy. 9)
anglesq € R” and using forward kinematics; the actual tip
velocity x and acceleratiork are computed by numerical We use the control input
derivation with suitable low-pass filtering. . o _ .

Equations (7), (1) and (6) describe the computation off = Fi (%) +A(x) Xa+ p(x, %) %0 — K x = Dax, (10)
the desired Cartesian position, velocity and acceleratiQinich is mapped in joint torques as

2Note that we can also regulate this overlapping by reguitarithe full T = J(q)T F, = g(q) 4
covariance matrices and/or the values in their diagonal byuliiplication

. N ~ - (11)
factor . +J(q)" (Ad Xg + p(x, %)% — Kpx—Dg x).



The desired inertia matriA; is chosen to be equal to vk Tomononan T wrex . -
the robot inertiaA (x), in order to avoid the use of external | A oy o A
forces sensor, which leads to the desired closed loop bahavi - cf:

~~ . \"
A%+ (n(x,%) + D)% + K% = For. (12) = W-—b E.

Xy =X, X=Xgq — X, x andx represent, respectively, the —desired tip velocity] “| [—desired tip acceleration
desired position and the position, velocity and accelenati | tip velocity —tip acceleration
tracking errors. Note that, since the desired inertia madri
configuration dependent, the Coriolis and centrifugal germ oK | INTERACTION | TASK s | wreracTion
should also be considered in (12) to fulfill the skew symmetry - . —
property of the matrixA (x) — 2u(x,%) and the passivity = <.
of the system in the regulation caseD, and K,, are % @—mw %
symmetric and positive definite matrices representing the . — : - N :

. . . . —desired tip velocity —desired tip acceleration
desired damping and stiffness. A constant and diagona |  |—p velocity —tip acceleration
damping matrix is used. The stiffness matrix is chosen to oo ot e
be constant with values computed according to a trade-  .|tasc | wreracrion | Task INTERACTION | TASK
off between tracking performance and required compliance  {{"* hd T e
An additional requirement is that the relatiég, x should = % w
represent a passive mapping from the velocity exréo the % , AN — £
external forcesF..; in order to ensure the stability of the &= L
system in both the cases of interconnection with a passive . —desired tip veloﬂ "] |—desired tip acceleration

. . . —tip velocity —tip acceleration
environment and in free motion.

s R

B. Experimental results ! , o ,
Fig. 5. Plot of the desired and actual trajectories of thee&ffettor velocity

The experiments carried out consist of two phases. In thieft) and acceleration (right). During the interactionaph, the robot can
first phase shown in Fig. 3, several demonstrations of the tv@gher stand still or be moved by the user; in both the casesnthtion
. . . . .commands tend to fade and all the control torques, excepbrthe needed
tasks to be learnt are supplied through kinesthetic tegchiry,, gravity compensation and orientation tracking, arel.rilihe presence
These are represented by the drawing of the alphabetitmotion outside the task regions is due uniquely to thedsrapplied by
characters "A” and "B” on a board, as shown in Fig. 1.he user.
During the demonstrations, the robot is controlled onlyhwit
gravity compensation torques = g(q) and, given its high . ] . ) )
back-drivability, the user can easily move it with low effor undiscovered regions, which may lead to undesired motion,
At the end of this phase the GMM parameteréjoss!bly.reachlng the workspace and velocity limits. Be;eau
{1, Zx}E_, are estimated by Expectation—MaximizationOf_ this risk, we preferred not to carry out_ any _expe_nmgnt
method [2], [5], see Fig. 3-a, showing the learnt 18 GaussigMith the real robot for safety reasons by using this weightin
componenté. The computation of the motion primitives’ SCheme.
parameterd A, by, } I | is carried out for each component Then, we present experimental data relative to the use of
using a weighted least-squares method. This considers ¢ proposed method. The experiment consists in showing
position and velocity data collected during the demonstrd0wW moving the robot towards one of the multiple learned
tions and the weight computed off-line according to (4) anégsks can be used as simple mean to select which one of
relative to the same positional data. them to reproduce. As depicted in Fig. 4-b, the robot starts
In the reproduction phase, the impedance controller is af2e reproduction of the skill by drawing the "letter A” anceth
tive to perform trajectory tracking with and without extatn user interrupts the task by moving the robot away from the
forces applied to the tip. region of the task. The robot shows high compliance, thus
Fig.4-a shows a simulated experiment with the standarjlowing the user to employ low effort, while the velocity
GMM formulation described in (3) and (2). In this simulated@nd acceleration commands are forced to smoothly fade
scenario, the user grasps the tip, moves it far away from ttefore a complete stop occurs (when the tip is released).
task region (with a non-negligible effort, since a motiomeo Fig. 3-b shows the value of the weights, that tends to zero
mand is always present). The learned skill is reproduced RHrng the interaction phase. Further data collected durin
the experiment is shown in Fig. 5, where the time plots
3See [18] for further details and proof of closed loop stapili of the desired and actual trajectories for position, véjoci

“The number of components is set empirically, by visual iospe, in  anq acceleration of the robot are depicted. The difference
order to reach a good trade-off between the model complexity fit of b h | and desired velocity duri he inti
the data. A well-known drawback of Gaussian Mixture Modslghat the etween the actual and desired velocity during the interact

optimal number of component may not be known beforehanceradive ~ phase is caused by the user who moves the tip. When
solutions exists, such as involving the use of informatibeoty methods, released outside the task region, the desired velocity and
e.g. the Bayesian Information Criterion (BIC) or infornmatirelative to the . . .

trajectory curvature that exploit the continuous progsrtof human body accelerations are null and the robot is controlled in pure

movements, as discussed in previous work of ours [12]. gravity compensation mode.



The user can then decide which particular task to perform
by manually moving the robot towards the region of spacqy)
relative to the other task, drawing the alphabetic characte
"B". The robot smoothly converges to the execution of such
a task as shown in Fig. 4-b.

A good tracking capability, in terms of position, velocity [2]
and acceleration error, of our model-based control system i
shown in the experiments in Fig. 5. This suggests that our
knowledge of the dynamic model of the robot is consistent3]
with the requirements of our application and there is no
pressing need for a robust controller accounting for model
uncertainty. (4]

A video of the experiments accompanies this paper and is
also available attt p: // progranmmi ng- by- denonstration. org.

[5]
V. CONCLUSIONS

We proposed an approach to ensure safe pHRI during th[é3

reproduction of several learned tasks by using the robot as
a bilateral tangible interface. Our perspective is to viee t 7
robot not only as an output device reproducing a Iearneé
skill, but also as an input device allowing interactionshwit
the user during the execution of a task, with the aim tol®!
influence the robot's actions.

We showed through experiments that reformulating thd®l
weights in GMMs as being independent could be helpful
in pHRI scenarios.

In the first scenario the user can stop or pause a tagk{l
by pushing or pulling the robot arm away from the relative
region. In this case, the motion command applied to the tipi]
fades as the robot is moved away, with a resulting compliant
behavior. The second example shows that the user can select
the task to be executed by physically guiding the towards theg]
relative region, thus providing a simple and intuitive mean
for the user to modify and control the robot behavior in Q3]
safe manner and without relying on any external interface.

In future works, the proposed method can be applie
in more complex pHRI scenarios if force measures a
available. This would allow encapsulating forces in the&tas
description and could contribute to rescaling the weight&s!
for the motion/force primitives. We plan in future work to
consider incremental kinesthetic teaching scenariod) asc [16]
in [21], to allow the user to gradually refine a learned skill
without interrupting its execution. During the reprodoctj 17
the user would have the opportunity to grasp one part of the
robot and locally modify the learned movement. After relead8l
ing the arm, the robot would then continue the execution of
the skill by updating its model of the movement accordingly(19]
Such interaction would allow the user to scaffold the rabot’
learning of the skill in an intuitive and efficient manner.

The operational space formulation proposed in [8] can beo]
adopted to improve the desired tracking performances ds wel
as to employ robot motion in its null space in order to avoid
undesired collisions with the user or the environment. [21]
In addition, strategies for the avoidance of any unwanted
collision during the interaction phase can be considered, a
done in [17], if tracking of the user position is available.

]

14]
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