
Optimal Control Combining Emulation and Imitation
to Acquire Physical Assistance Skills

Amirreza Razmjoo, Teguh Santoso Lembono and Sylvain Calinon

Abstract— This paper studies exploiting action-level learn-
ing (imitation) in the optimal control problem context. Cost
functions defined by the optimal control methods are similar
to the goal-level learning (emulation) in animals. However,
imitating the robot’s or others’ (e.g. human’s) previous ex-
periences (demonstrations) could help the system to improve
its performances. We propose to use demonstrations more
efficiently by predicting an initialization for the optimal control
problems (OCPs) and adding an imitation term to the cost
functions. While the predicted initial guess initializes the OCPs
close to their local optima, the imitation term guides the
optimization, resulting in a faster convergence rate. We test
our algorithm in a physical assistive task where a robot should
help a human perform a sit-to-stand (STS) task. We define this
task as two optimal control problems. The first OCP predicts
the human’s desired assistance and the other one controls the
robot. We have tested our method on different experiments
with different conditions for the human in which the robot
should quickly solve the two optimization problems exploiting
some demonstrations of how it can perform the task. Our
proposed method reduced the number of iterations by more
than 90% and 70% for the human assistance prediction and
the robot controller, respectively, compared to the standard
problem which does not take the demonstrations into account.

I. INTRODUCTION

Skill acquisition encompasses a broad spectrum of learn-
ing approaches from action-level imitation to goal-level
emulation. Our motivation to combine both imitation and
emulation comes from social learning studies with animals
and humans showing the mutual benefits of both learning
strategies [1]. While emulation requires higher cognitive
skills to infer the intended goals behind a set of actions,
imitation allows to acquire skills in a simple but limited
way, by directly mimicking the movements and actions
shown to the learner. Because of its higher level nature,
emulation can easily be misinterpreted as being the only
useful mechanism. Ethology studies such as [1] argue that
the two are complementary, in the sense that emulation
allows greater generalization (i.e., the learner understands the
purpose of the task and can reproduce it in possibly different
ways), while imitation allows to acquire complex task fast,
even if all underlying goals are not understood (“copy all,
refine later” strategy).

Similarly, in the engineering world, research on optimal
control and reinforcement learning (RL) is tightly connected

This work was supported by the SWITCH project (https://
switch-project.github.io/), funded in part by the Swiss National
Science Foundation.

The authors are with the Idiap Research Institute and the École Polytech-
nique Fédérale de Lausanne (EPFL), Switzerland {amirreza.razmjoo;
teguh.lembono; sylvain.calinon}@idiap.ch

Fig. 1. Models of the human (blue) and the robot (orange). The
corresponding CoM positions are presented as semi-filled discs.

to the emulation approach, while research on movement
primitives is tightly connected to the imitation approach.
Emulation makes the system more generalizable, however,
we show that imitation/mimicking can improve the learning
rate. We test our method with an assistive task in which a
robot should provide the required help for different users. We
propose an approach to consider human demonstration (i.e.,
imitiation) in the context of optimal control (i.e., emulation).
We compare the convergence rate of the controller with and
without the imitation part.

The proposed approach also relates to studies in two other
fields. The first field is RL in which some works such as
[2] show how imitation can accelerate the convergence of
RL systems with sparse rewards. While such approaches
typically target autonomous skills learning, we study the
problem in the context of assistive skills acquisition in which
optimal control is more preferable to RL. The second related
field is warm starting whose detailed comparison with our
approach is described later in this paper.

Optimal control problems typically face two main chal-
lenges. The first is nonlinearity, which can be partially solved
using iterative approaches to find locally optimal solutions,
including differential dynamic programming (DDP) [3] and
iterative linear quadratic regulator (iLQR) [4]. When the
problem needs to be solved online, approaches relying on
trajectory predictions to better initialize these optimization
methods have been investigated. This approach is called
warm starting, which can use methods based on lookup
tables [5], [6], Gaussian process regression (GPR) [7], or
neural networks (NN) [8]; see [9] for an overview. The other
main challenge in optimal control is defining the cost, where
some techniques like inverse optimal control (IOC) [10] have
been proposed to infer this cost from demonstrations.

Both the warm start and IOC approaches use demonstra-
tions to address the mentioned challenges in optimal control.
In this paper, we propose a method to exploit the demonstra-
tions more efficiently by trying to also imitate them rather
than merely emulating them. To do this, we modify the
cost function (emulating part) with a term that penalizes the

https://switch-project.github.io/
https://switch-project.github.io/


system when it deviates far from the demonstrations, and
show how this term, in addition to the warm start, can further
improve the convergence rate of the optimization problem.

We test our method on a simulated sit-to-stand (STS) task
(see Fig. 1) defined as two optimal control problems (OCPs).
The first OCP predicts the user’s desired help, and the second
one predicts the robot torques that are required to provide
the predicted assistance. Hereafter, the first and second OCP
is called the human assistance prediction and the robot
controller, respectively. In our formulation, we assume that
the user can have some disabilities in its ankle, knee, and
hip joints. The mass and height of the human can also vary
according to each user so that the robot should quickly solve
the two OCPs by considering some successful examples of
the task. We will show how our approach could be beneficial
to achieve this goal by comparing the convergence time of
the OCPs with and without the proposed method.

In the remainder of this paper, in Section II, we describe
the required background for this study, and we explain
the methodology in Section III. The simulation results are
presented and discussed in Section IV and V, respectively.
Finally, we conclude the paper in Section VI.

II. BACKGROUND

A. STS Task

Physical assistance has been studied in different applica-
tions such as dressing [11], [12] and sit-to-stand (STS) [13].
We use the latter to evaluate the benefits of our proposed
method. Defining the STS task as an optimization problem
is not a new approach. El-Husseiny et al. [14] have used the
IOC technique to find a quadratic cost function to generate
human hip motion during the STS task. Their cost function
consisted of two terms, one for states regularization and the
other for inputs regularization. In another work, Geravand
et al. [13] have used a similar approach, but have found a
more elaborated cost function that considers different criteria
such as the human’s final position, Center of Mass (CoM)
position at the end of the task, and joint limits. Li et al.
[15] divided the STS task into two sit-to-perch (STP) and
perch-to-stand (PTS) phases. They observed that during the
STP phase, the hip joint motions, and during the PTS phase,
the motions of the ankle, knee, and hip joints are consistent
among the participants. They defined two cost functions for
these two phases, which minimize the total torque commands
of the human in the STS task. In our work, we define the
STS task as in [13], but with a simplified cost function
defined manually to generate human-like STS transfer. The
cost function is described with more details in Section III-B.

B. Iterative LQR (iLQR)

iLQR is a modified version of the linear quadratic reg-
ulator (LQR) for nonlinear systems. In the LQR method,
the cost function is defined as a quadratic function, and the
dynamic of the system is assumed to be linear. ILQR exploits
Taylor expansion to quadratize the cost function c and to
linearize the system’s dynamics f around their current values
w.r.t. the system variables, namely, the states of the system

x and the input commands u. Then, at each iteration, it
solves an LQR problem and updates the current solution.
This process continues until it reaches a local optimum.
Here, we use the batch form of iLQR, but without any loss
of generality, the idea is valid for any other optimization
method.

The dynamical system xt+1 = f(xt,ut) can be linearly
approximated around its current estimations as

xt+1 ≈ x̂t+1 +
∂f

∂xt
(xt − x̂t) +

∂f

∂ut
(ut − ût)

⇒ ∆xt+1 ≈ At∆xt + Bt∆ut.
(1)

In (1), x̂t and ût are the current estimations of state and
input variables at t, while At and Bt are the system and input
matrices, respectively. This equation formulates the change
of the states at each time as a linear function of the change of
the inputs and states at its previous time. With this recursive
formula, we can formulate the deviations of all the states as

∆x2

∆x3

...
∆xT

 =


A1

A2A1

...∏T−1
t=1 AT−t


︸ ︷︷ ︸

Sx

∆x1 +


B1 0 · · · 0

A2B1 B2 · · · 0
...

...
. . .

...∏T−2
t=1 AT−tB1

∏T−3
t=1 AT−tB2 · · · BT−1


︸ ︷︷ ︸

Su


∆u1

∆u2

...
∆uT−1

,

(2)

where Su and Sx are transformation matrices that map ∆u
and ∆x1 to ∆x, respectively. Since the initial states of the
system are known (∆x1 = 0), we can write

∆x = Su∆u, (3)

where ∆u and ∆x are the concatenated vectors of variations
of all the input and the state variables, respectively.

The cost function c is a nonlinear function of all the states
and inputs, so its quadratized version can be defined as

c(x,u) ≈ c(x̂, û) + ∆x>gx + ∆u>gu

+
1

2
∆x>Hx∆x +

1

2
∆u>Hu∆u

+ ∆x>Hxu∆u,

(4)

where
gx =

∂c

∂x
, gu =

∂c

∂x
, (5a)

Hx =
∂2c

∂x2
, Hu =

∂2c

∂u2
, Hxu =

∂2c

∂x∂u
. (5b)

The value of ∆x in (4) can be replaced from (3), so
the quadratized cost would be a function of only ∆u. The
optimizer ∆u∗ of (4) can be found by putting its gradient
equal to zero, which would result in

∆u∗ = (S>
uHuSu + 2S>

uHxu + Hu)−1(−Sugx − gu).
(6)



TABLE I
Dynamical parameters of a human body segments.

The segment Lratio Mratio I (kg.m2) CoMratio
Foot 0.042 0.0145 0.0038 -

Shank 0.250 0.0465 0.0505 0.532
Thigh 0.240 0.0988 0.1502 0.500
Trunk 0.300 0.5080 1.3080 0.530

Upper arm 0.183 0.0270 0.0213 0.430
Forearm 0.160 0.0160 0.0760 0.410

The last step only works when there is no hard constraint,
so we define the constraints in this experiment as a part of
the cost function, and heavily penalize the system when it
violates them.

III. METHODOLOGY

We formulate the STS task as two optimal control prob-
lems with two separate cost functions to describe the human
assistance and the robot controller. These cost functions are
minimized by considering the human and robot’s dynamical
model using iLQR. To improve the convergence rate of the
OCPs, we propose to use previous demonstrations to predict
the optimal trajectories which are then used to warm start
the OCP solver as well as to modify the cost function with
an imitation term. In addition, we take advantage of control
primitives (CPs) to generate smoother behaviors and reduce
the dimension of the system states and inputs.

A. Dynamical modeling

We model the human as a planar inverted pendulum with
five links, which is inspired from STS literature such as [15],
[13]. We assume that the robot assisting the human is also a
five-link planner pendulum. Fig. 1 illustrates the two agents
during the STS task. In this modeling, the mass and the
length of each body segment are calculated according to their
proportion to the agent’s total mass and height, respectively.
Also, the mass of each link is assumed to be located at its
CoM position. For each segment, its Lratio (length ratio to
the human’s height) [16], Mratio (Mass ratio to the human’s
total mass) [16], I (the moment of inertia) [16], and CoMratio
(distance of CoM position of each link from its previous link
normalized with the length of each link) [17] are presented
in Table I. Note that in the simulation, the values of Mratio
and I should be doubled for all of the segments, except
for the trunk, as there are two of them in human bodies.
While the human can have different total mass and height
among different experiments to simulate different subjects,
The robot always has 80 kg mass and 1.8 m height.

B. Task definition

1) Human assistance prediction: At this step, the robot
tries to find what is the optimal way to help the human
by solving an optimization problem whose outputs are the
optimal desired external forces and the human reaction
during the task. The cost function defined for this step has
two main terms. The first one specifies the human to be
at the standing position at the end of the task and the other
term penalizes high input commands and external forces. The
standing position is defined as the human’s shanks, thighs

and trunk are in the straight-up direction with zero velocity.
By changing the cost weight on each of the human’s joints,
we control its torque value and simulate different disabilities.
For example, by giving high cost weight to the human’s knee,
we emphasize that this joint has some problems and should
not apply large torques. In this experiment, we only change
the cost weights of the ankle, knee, and hip joints.

There are two other terms in the cost function of the human
assistance prediction to make the total CoM position of the
human to be at the foot support at the end of the task and to
consider the human’s joints limits during the task. These two
costs penalize the system when it goes out of the feasible
region. This step can be defined mathematically as

u∗H ,F
∗ = argmin

uH ,F
cH(m,h,R), (7)

where uH and F are the human torque commands and
external forces, respectively, and cH is the cost function.
m and h are the user’s total mass and height, respectively,
and R is the joints cost weight. The human’s optimal joint
trajectory x∗H and its hand trajectory can also be calculated
with the outputs of (7) and considering the human’s model.

2) The robot controller: The robot should follow the
trajectory of the human’s hand while it is expected to receive
F ∗ alongside this trajectory. For the first one, we put a term
in the robot’s cost function to move its end-effector at the
planned human’s hand trajectory, and for the second one, we
regularize the interaction forces around F ∗. Like the human
assistance prediction, the cost function of the robot should
be minimized w.r.t. the robot’s torques and the interaction
forces. Note that interaction forces are functions of the
human’s and robot’s torques and configurations. Thus, by
considering them as separate variables, we violate a physical
constraint, which is that the end-effector of the robot and the
hand of the human should be at the same place every time.
We consider this constraint in our cost function. In this way,
we do not need to solve the closed-chain kinematic problem
of the two systems to find the interaction forces, so we can
consider the two agents as two separate systems. The robot’s
joint limits and the stability of both the human and robot at
the end of the task are also considered in the robot controller.
That said, the robot controller can be modeled as

u∗R,F
′∗ = argmin

uR,F ′
cR(x∗H ,F

∗,u∗H), (8)

where uR is the robot’s torque commands and F ′ is the
interaction forces. If (8) converges well, we expect F ′∗ to
be equal or at least be close to F ∗. The two cost functions
mentioned above are the emulation part of the STS task. In
this paper, we propose to speed up the convergence rate of
these two OCPs by exploiting warm starting and imitation.

C. Warm starting

The closer the initial guess is to the system’s local opti-
mum, the fewer iteration iLQR needs to find an optimizer.
The system can guess a good initial point by exploiting its
previous experiences which are, in this paper, some demon-
strations gathered by solving the OCPs without considering



the imitation term. This could be done either by lookup tables
or any regression method that could map the situations to the
initial guess. Here, we present the idea with the former one,
in the form of k-nearest neighbors (k-NN) with k = 1.

D. Imitation cost

The cost function in (4) can be seen as the emulation
part of the task. Although it can generalize the task to any
situation, it often requires lots of iterations to converge to a
solution. To address this problem, we modify c in (4) as

c′ = c+ λ(p− pd)
>(p− pd). (9)

In (9), p is a feature vector we want to imitate, pd is
its desired value extracted from the demonstrations, and λ
is a positive constant. This imitation term has a minimizer
that is expected to be close to the minimizer of the main
cost function c, so the optimization problem would more
likely iterate toward an area that is emphasized by the main
cost and the imitation term. We can be more confident about
the closeness of the minimizers if the desired value of the
chosen feature pd can be predicted for the new situation
with sufficient accuracy. Because of this, this feature should
be chosen with some caution. Note that it does not need to
be very accurate: just accurate enough to give the system
some guidance toward its local optima. In this work, we
chose the joint angles as the features, and we predict its
values from the demonstrations by using k-NN with k = 1,
but any applicable method could be used. The value of λ
should be small as compared to other values in c in order to
not significantly affect the main optimization problem, but it
should be large enough to affect the convergence rate. Hence,
λ should be adjusted for each task.

E. Control Primitives (CPs)

We assume that the input commands are made up of
some basis functions each of which is called a control
primitive (CP). Here, we used radial basis functions (RBFs),
but other basis functions such as Bernstein polynomials or
Fourier series can also be used [18]. The basis functions
implicitly enforce the smoothness and the continuity of the
control inputs and help the human and the robot behave more
naturally. We assume that the input commands can be defined
as

u = Ψwu ⇒ ∆u = Ψ∆wu, (10)

where Ψ is the transformation matrix made up of the basis
functions (CPs) and wu is the vector of the CPs’ coefficients.
With this assumption, (6) should be modified as

∆w∗u =
(
Ψ>(S>

uHuSu + 2S>
uHxu + Hu)Ψ

)−1
Ψ>(−Sugx − gu). (11)

We use a different number of basis functions for the two
OCPs, i.e., five basis functions for the human assistance
prediction and eight basis functions for the robot controller.

IV. SIMULATION

In this section, we apply our method to a simulated STS
task. To gather the demonstrations, we solve the OCPs
without the imitation term for N times and record the
human’s dynamical characteristics (i.e, m, h and R) and the
coefficients of the CPs for the human assistance prediction
and the robot controller. We also record the joint angles of the
human and the robot to predict the desired trajectory for the
imitation part, however, we map them to a lower dimension
as

xθ = Ψwxθ ⇒ wxθ = Ψ†xθ, (12)

where Ψ† is the pseudoinverse of Ψ. The θ subscript beside
x shows that xθ only consists of the joint angles and does
not include other states. Ψ used for mapping each agent’s
joint angles is the same as its corresponding CPs.

We then test our method on 100 random situations. The
evaluation criteria are the convergence rates and the cost
values at different iterations. We compare our method with
three other baselines, i.e. the standard problem without any
modification (STD), using only the warm start method, and
using only the imitation term.

We consider two experiments for the STS task. In Experi-
ment 1, we only change the human’s disability type and keep
the mass and height constant for all demonstrations and test
points. In Experiment 2, we change the mass and the height
of the human beside its disability type. The variation of the
cost weights is considered only for the ankle, knee, and hip
joints. The robot is the same for all of the experiments.

1) Experiment 1: Changing only the human’s disability:
In this experiment, we assume that we have the same
human for the whole experiment whose type of disability
is changing. We simulate this by changing the values of
R, while keeping the values of m and h constant (m =
80 kg and h = 1.8 m). For the demonstrations, we choose
elements in R corresponding to ankle, knee and hip joints
randomly among {1,10,100,1000,10000}. We compute N =
15 demonstrations by solving (7) and (8). During the test
phase, we try different situations by initializing the problem
with random joint cost weights. Unlike the demonstrations,
the system can choose any value between 1 to 104 (not
limited to the discrete values). We use the logarithmic
Euclidean distance for k-NN used for warm starting and
extracting desired features pd. Table II shows the results
of this experiment for both the human assistance prediction
and the robot controller. The proposed method outperforms
other approaches; comparing it with the STD method, the
combined method reduces the number of iterations by around
90% and 80% for the human assistance prediction and the
robot controller, respectively. The data in Table II show
that even adding only the imitation term without any warm
starting can result in a better convergence rate than the other
two methods. The reason why this method affects the human
assistance prediction more than the robot controller is that in
the former, the cost function is sparse. Namely, it specifies
the behavior of the system at a particular time (joint angles
and velocities are only relevant at the end of the task) or



TABLE II
Comparing the mean value of number of iterations and convergence time with their standard deviation for different approaches.

exp1 exp2
method # iterations conv. time (s) # iterations conv. time (s)

Human assistance prediction

STD 80.84 ± 103.77 10.63 ± 18.50 80.24 ± 68.55 10.07 ± 11.15
Only warm start 53.93 ± 119.67 7.22 ± 19.32 48.62 ± 41.06 5.35 ± 5.77
Only imitation 14.28 ± 3.28 1.66 ± 0.30 14.31 ± 2.75 1.24 ± 0.65

Combined 7.26 ± 3.30 1.27 ± 0.58 9.33 ± 2.87 0.77 ± 0.37

The robot controller

STD 89.58 ± 71.58 25.23 ± 37.79 101.63 ± 111.81 31.42 ± 53.86
Only warm start 56.53 ± 74.77 13.72 ± 25.38 57.97 ± 45.00 13.78 ± 16.67
Only imitation 43.39 ± 27.59 9.30 ± 9.41 46.99 ± 36.97 10.64 ± 13.86

Combined 17.90 ± 7.43 2.79 ± 1.79 28.73 ± 23.78 5.32 ± 8.82

when it goes out of the feasible region (joint limits). Adding
the imitation term to this problem provides a trajectory
reference to follow and makes the problem less sparse.
For the robot controller, however, the robot should already
follow a trajectory (the human’s hand) and adding another
trajectory to follow could be less effective. Nevertheless, the
proposed method still has remarkable effects on the number
of iterations compared to the other three ones.

We present the value of the cost on a logarithmic at
different iterations for all of the methods in Fig. 2. To
make a rational comparison between different test points, we
normalized all the costs w.r.t. the lowest value achieved from
these methods at the 60-th iteration. As it is illustrated in this
figure, adding the imitation term increases the convergence
rate which is more obvious for the points that start far from
the local optimum. On the other hand, warm starting helps
the system to be initialized at a lower cost. The combined
method takes advantages of both methods and outperforms
the other ones. The cost value presented in this figure is
just for the emulation part c, as the imitation cost is only
introduced to help the emulation and is not part of the
original task.

2) Experiment 2: Changing mass, height and the human’s
disability: In this experiment, we repeat Experiment 1, but
with varying values for the human’s mass and height. We
assume that the human’s mass varies between 60 to 100
kilograms and the height of the human ranges from 1.6 to 2
meters. To generate N = 15 demonstrations, we randomly
pick among {60, 70, 80, 90, 100} and {1.6, 1.7, 1.8, 1.9, 2} to
describe the human’s mass and height, respectively. However,
we do not limit the system to these discrete values for the
test points, and the system can choose any value in the
corresponding range. Since the data are not in the same
range, we define closeness for the k-NN method differently
from Experiment 1. We first get the logarithms of the cost
weights, then normalize these data as well as the human’s
mass and height with their mean values and standard de-
viations. The distances between the demonstrations and the
test points are defined with the Euclidean distance of the
normalized data. The results of this experiment are presented
in Table II and Fig. 2. Comparing with the STD method, the
combined method has reduced the number of iterations by
around 90% and 70% in the human assistance prediction
and the robot controller, respectively. Although using only
the imitation term may initialize iLQR with a higher cost
value, it can converge even faster than using only the warm

Fig. 2. Comparing the mean values of the normalized costs in logarithmic
scale for Experiment 1 (first row) and Experiment 2 (second row). Left: The
human assistance prediction. Right: The robot controller.

starting method, as shown in Fig. 2d.

V. DISCUSSION

We can evaluate the proposed method with two criteria: 1-
how it affects the convergence rate, and 2- how it affects the
cost value. Regarding the convergence rate, as it is already
discussed, the combined method has notably reduced the
number of iterations. As it is also shown in Fig. 2, this
method does not have a sensible effect on the cost value,
however, it would slightly increase the value of the emulation
cost. This behavior is expected, as the system compromises
between the emulation part and the imitation part. We can
solve this issue by decreasing the value of λ as the number of
iterations increases, which is often done in other optimization
methods. In this paper, however, we keep the value of λ
constant.

In some methods such as feasibility-driven differential dy-
namic programming (FDDP) [19], it is possible to warm start
the controller with the input commands and state variables
simultaneously. As studied in [20], initializing with both the
control input commands and the state variables is better than
predicting just one of them. Our experiments support this
observation. Moreover, our method provides a framework to
use any feature that can describe the task more accurately.
Hence, one can feed the solver with more elaborated features
(9) and is not limited only to the optimization variables.

In this experiment, we used k-NN to predict the warm
starts or to find the imitation trajectory pd. It worked pretty
well in this experiment, but it is not the case for all of the
tasks. Using more elaborated techniques like GPR, Gaussian



mixture regression (GMR), or neural networks may be more
useful for more complicated trajectories. One can also use
algorithms proposed in the Learning from Demonstration
(LfD) field, such as dynamical movement primitives (DMPs)
or task parametrized-GMM (TP-GMM) [21]. We see clear
connections between the LfD methods and the optimal
control [22]. We hope the proposed idea here could bridge
the gap between these two fields.

We presented the idea with the manually-adjusted cost
functions, but the idea proposed is independent of a spe-
cific cost function and should work for most optimization
problems. We will study more accurate cost functions in our
future works. Moreover, one of the reasons to work with
the manual cost function was that it gave us the freedom
to gather random demonstrations. For real applications, it
is not possible and we are limited to the available options.
Therefore, we may not have access to a diverse and rich
demonstration set, for example, we may not be able to gather
data from a human whose ankle, knee, and hip joints are
severely paralyzed. In such situations, we can program the
robot to play the role of the assisted human and ask an expert
caregiver to simulate the desired help. This technique which
is called switching the role between the robot and the human
would be studied more in our future works.

VI. CONCLUSIONS

In this paper, we studied how imitation can be useful in
the context of optimal control methods. For this, we modified
the cost function by adding an imitation term to follow the
desired feature extracted from the demonstrations. Unlike the
warm starting methods, the desired feature can be any feature
and we are not limited to the input variables of the optimal
control method. We tested our algorithm on a simulated
assistive task, and we showed that the proposed method had
a remarkable effect on the convergence rate of the OCPs,
while it does not have any practical effect on the ultimate
cost value. In this paper, we studied improvement only in
terms of the convergence speed, but we believe that if we
extract the features from human-human data, this method can
also improve other aspects of the task, such as help the robot
to perform tasks more naturally and to be more predictable
during the task. These features are important in the tasks
where humans have direct interaction with the robot, such
as assistive tasks. As a future study, the effectiveness of this
method in these areas should be studied as well. Moreover,
employing more elaborated learning methods will be con-
sidered in future studies. For practical implementation of
this method on a real robot, other issues, e.g., unpredictable
changes in the human conditions, defining more accurate cost
functions, etc. should also be addressed, which are out of the
scope of this paper, and would be considered in our future
works.

REFERENCES

[1] A. Whiten, N. McGuigan, S. Marshall-Pescini, and L. M. Hopper,
“Emulation, imitation, over-imitation and the scope of culture for child
and chimpanzee,” Philosophical Transactions of the Royal Society B:
Biological Sciences, vol. 364, no. 1528, pp. 2417–2428, August 2009.

[2] A. Nair, B. McGrew, M. Andrychowicz, W. Zaremba, and P. Abbeel,
“Overcoming exploration in reinforcement learning with demonstra-
tions,” in Proc. IEEE Intl Conf. on Robotics and Automation (ICRA),
2018, pp. 6292–6299.

[3] Y. Tassa, T. Erez, and E. Todorov, “Synthesis and stabilization of
complex behaviors through online trajectory optimization,” Proc.
IEEE/RSJ Intl Conf. on Intelligent Robots and Systems (IROS), pp.
4906–4913, 2012.

[4] W. Li and E. Todorov, “Iterative linear quadratic regulator design for
nonlinear biological movement systems,” in ICINCO, 2004.

[5] M. Stolle and C. G. Atkeson, “Policies based on trajectory libraries,”
Proc. IEEE Intl Conf. on Robotics and Automation (ICRA), pp. 3344–
3349, 2006.

[6] C. Liu and C. G. Atkeson, “Standing balance control using a trajectory
library,” Proc. IEEE/RSJ Intl Conf. on Intelligent Robots and Systems
(IROS), pp. 3031–3036, 2009.

[7] D. Forte, A. Gams, J. Morimoto, and A. Ude, “On-line motion
synthesis and adaptation using a trajectory database,” Robotics and
Autonomous Systems, vol. 60, no. 10, pp. 1327–1339, 2012.

[8] N. Mansard, A. Delprete, M. Geisert, S. Tonneau, and O. Stasse,
“Using a Memory of Motion to Efficiently Warm-Start a Nonlinear
Predictive Controller,” in Proc. IEEE Intl Conf. on Robotics and
Automation (ICRA), 2018, pp. 2986–2993.

[9] T. S. Lembono, A. Paolillo, E. Pignat, and S. Calinon, “Memory of
Motion for Warm-Starting Trajectory Optimization,” IEEE Robotics
and Automation Letters (RA-L), vol. 5, no. 2, pp. 2594–2601, 2020.

[10] K. Mombaur, A. Truong, and J. P. Laumond, “From human to hu-
manoid locomotion-an inverse optimal control approach,” Autonomous
Robots, vol. 28, no. 3, pp. 369–383, 2010.

[11] G. Canal, E. Pignat, G. Alenya, S. Calinon, and C. Torras, “Joining
high-level symbolic planning with low-level motion primitives in
adaptive HRI: application to dressing assistance,” in Proc. IEEE Intl
Conf. on Robotics and Automation (ICRA), 2018, pp. 3273–3278.

[12] T. Tamei, T. Matsubara, A. Rai, and T. Shibata, “Reinforcement
learning of clothing assistance with a dual-arm robot,” in Proc. IEEE
Intl Conf. on Humanoid Robots (Humanoids), 2011, pp. 733–738.

[13] M. Geravand, P. Z. Korondi, C. Werner, K. Hauer, and A. Peer, “Hu-
man sit-to-stand transfer modeling towards intuitive and biologically-
inspired robot assistance,” Autonomous Robots, vol. 41, no. 3, pp.
575–592, 2017.

[14] H. El-Hussieny, A. Asker, and O. Salah, “Learning the sit-to-stand
human behavior: An inverse optimal control approach,” 13th Inter-
national Computer Engineering Conference (ICENCO), pp. 112–117,
2017.

[15] J. Li, L. Lu, L. Zhao, C. Wang, and J. Li, “An integrated approach
for robotic Sit-To-Stand assistance: Control framework design and
human intention recognition,” Control Engineering Practice, vol. 107,
p. 104680, 2021.

[16] A. Tözeren, Human body dynamics: classical mechanics and human
movement. Springer Science & Business Media, 1999.

[17] R. Drillis, R. Contini, and M. Bluestein, “Body Segment Parameters;
a Survey of Measurement Techniques.” Artificial limbs, no. 2, pp. 44–
66, 1964.

[18] S. Calinon, “Mixture models for the analysis, edition, and synthesis
of continuous time series,” in Mixture Models and Applications,
N. Bouguila and W. Fan, Eds. Springer, Cham, 2019, pp. 39–57.

[19] M. Giftthaler, M. Neunert, M. Stäuble, J. Buchli, and M. Diehl, “A
Family of Iterative Gauss-Newton Shooting Methods for Nonlinear
Optimal Control,” pp. 1–9, 2018.

[20] T. S. Lembono, C. Mastalli, P. Fernbach, N. Mansard, and S. Calinon,
“Learning how to walk: Warm-starting optimal control solver with
memory of motion,” in Proc. IEEE Intl Conf. on Robotics and
Automation (ICRA), 2020, pp. 1357–1363.

[21] S. Calinon and D. Lee, “Learning control,” in Humanoid Robotics: a
Reference, P. Vadakkepat and A. Goswami, Eds. Springer, 2019, pp.
1261–1312.

[22] S. Calinon, “Learning from demonstration (programming by demon-
stration),” in Encyclopedia of Robotics, M. H. Ang, O. Khatib, and
B. Siciliano, Eds. Springer, 2019.


	INTRODUCTION
	BACKGROUND
	STS Task
	Iterative LQR (iLQR)

	Methodology
	Dynamical modeling
	Task definition
	Human assistance prediction
	The robot controller

	Warm starting
	Imitation cost
	Control Primitives (CPs)

	SIMULATION
	Experiment 1: Changing only the human's disability
	Experiment 2: Changing mass, height and the human's disability


	Discussion
	CONCLUSIONS
	References

