CCDP: Model-free Failure Recovery
via Guided Diffusion Sampling

Amirreza Razmjoo'2, Sylvain Calinon':3, Michael Gienger?, and Fan Zhang?

Abstract— Working in constrained environments means that
failures are often inevitable, so robots must be able to recover
from them. Typical recovery approaches require explicit models
of the underlying task, either during learning or reproduction,
to accommodate different possibilities and replan accordingly.
However, such models are not always available, especially in
imitation learning (IL), where one of the main advantages is
precisely to avoid explicit environment/task modeling and rely
instead on demonstration data. We present CCDP (Composition
of Conditional Diffusion Policies), a method that considers
failures during inference and guides the sampling steps of
diffusion policies to avoid previously failed actions. Remarkably,
CCDP relies solely on successful demonstrations: it infers
recovery actions without additional exploratory behavior or
a high-level controller. We validate our approach on several
tasks, including door opening with unknown directions, object
manipulation, and button searching, and show that it consis-
tently outperforms standard baselines. Supplementary material
is available at: https://hri-eu.github.io/ccdp/. This paper is a
condensed summary of our main publication at JROS 2025 [1].

I. INTRODUCTION

Recent advances in imitation learning—including Implicit
Behavior Cloning [2] and diffusion or flow-matching poli-
cies [3], [4]—have shown strong ability to capture rich, mul-
timodal behaviors directly from demonstrations. However,
these approaches still face a key limitation: when a sampled
action does not succeed, the policy has no built-in mechanism
for recovery. Since imitation learning typically provides only
successful demonstrations, the challenge is to design policies
that avoid blindly repeating failed actions and instead redirect
sampling toward alternative strategies already present in the
demonstrations, even if those strategies occur only rarely.

Many recovery strategies rely on additional resources such
as simulators [5], reasoning via large models [6], [7], [8],
or direct expert input [9]. Other works employ hierarchical
schemes where a high-level planner selects primitives or
sub-policies [5], [10]. While effective in some cases, these
methods increase complexity and often scale poorly as the
number of options grows. In contrast, our work focuses
on a simpler setting: enabling the low-level policy itself to
adapt after failures, without requiring explicit models or a
separate reasoning layer. The idea is inspired by everyday
experience—when searching for a light switch in the dark,

LEcole Polytechnique Fédérale de Lausanne (EPFL), Switzerland
amirreza.razmjoofard@epfl.ch

2Honda Research Institute Europe GmbH, Germany
{michael.gienger, Fan.zhang}@honda-ri.de
3Icliap Research Institute, Switzerland

Sylvain.calinon@idiap.ch

Fig. 1. A diverse demonstration set, featuring multiple task variations,
is provided to the robot. In the event of a failure, the robot switches to
alternative variations rather than repeatedly sampling the same actions.

failed attempts mainly tell us where not to look, and that
information alone is enough to guide the next action.

We aim to train policies that adapt based on past ob-
servations and actions [11], [12]. Two challenges arise: (i)
recovery must be learned without explicit failure data, since
demonstrations usually only show successes, and (ii) the
number of failures encountered at runtime can vary, making
it difficult to design a fixed-size input. To address the first
issue, we assume that while an attempted action may fail,
suitable alternatives already exist within the demonstration
set. By analyzing these demonstrations offline, we identify
diverse actions and train a model that encourages the policy
to choose options sufficiently different from those that just
failed. To handle the second issue, we build on the idea of
composing multiple models [13], learning recovery strategies
for individual failures and combining them at inference time
into a distribution that accounts for all observed failures.

We present the Composition of Conditional Diffusion
Policies (CCDP), which extends the diffusion policy frame-
work [3] by conditioning the sampling process on failure
information. When a failure is detected, CCDP steers the pol-
icy toward actions that differ from the unsuccessful attempt,
reducing repeated errors. To keep recovery manageable,
we decompose the problem into smaller diffusion modules
that can be combined at inference, avoiding the need for
long histories or explicit data categorization. This modular
view lowers the labeling burden while still capturing diverse
strategies observed in demonstrations.

Contributions: The main contributions of this work are:

https://hri-eu.github.io/ccdp/

e A modular diffusion policy formulation that improves
controllability and extends [3];

o A lightweight recovery strategy that requires only suc-
cessful demonstrations, with no labels or simulators;

o Empirical validation across tasks such as door opening,
button search, and object manipulation, showing advan-
tages over existing baselines.

II. PRELIMINARILY

A. Diffusion Policy

Let a; € R% denote the action at time ¢, x; € R% the
state, and hff = [a] ,;, ,x] 7, ,]7 the history of the
previous H actions and states. Diffusion Policy has been
proposed in [3] to model the multimodal action distribu-
tion in robot imitation learning using Denoising Diffusion
Probabilistic Models (DDPMs) [14] and Denoising Diffusion
Implicit Models (DDIMs) [15]. Diffusion Policy regresses
a noise prediction function ey(hf a; + ¥ k) = €* with
a network &y parameterized by 6. During training, the
current history and actions (h/? a;) are sampled from the
demonstrated dataset. Random noise ¥, conditioned on a
randomly sampled denoising step k, is added to a;. Thus,
the loss can be described as

L= ||€9(hfl,at + ek k) — skH2 .

During inference, given the history h¥, Diffusion Policy
executes a sequence of K denoising steps starting from
random samples actions af ~ AN(0,1) to generate target
robot actions a). This inverse process can be defined as

akil =« (aﬁ - 769(hflaat ; k) + 6)

where a,~ are the parameters of the noise schedule, &€ ~
N(0,021). The action af can be sampled from the demon-
stration data or expert policy 7 : hl — a;.

III. METHODOLOGY

A. Problem Definition

Given a dataset of M successful demonstrations D =
{(as, x¢, h1);}M | our objective is to learn a diffusion
policy that models the conditional distribution

ay ~ prlay | x¢, W7 2f), (1)

where z/ = z(af xf) extracts key features from the i-th

K

failure’s action a; and state x , and N denotes the total
number of previous failures. we dlscuss different possibilities
for z in Sec. [II=B.1]

Inspired by [13], we propose decomposing (I) into several
simpler sub-problems. Hence, (I)) can be rewritten as

pa(ay | xi, il 2])

)ps(at | Xt)ph at | hH
pa(at>

palar sz 2la) o

a,
leat

Using the diffusion model framework, we initialize with
a noisy sample and iteratively denoise through the reverse
diffusion process

paf ™" [af) = N (a(af —vé@fh).0fT). @3

According to (2), we decompose the denoising term
é(af, k) as follows:

é(ab, k) = ea(as, k) + wy (Es(at,xt, k) — eq(ay, k))

+ wp, (Eh(at, htH, k) —eq(as, k)

N
+ Zw (ez(at, 2! k) —ea(ay, k)). 4)
=1

Here, wg, wy, and w; are positive coefficients associated
with the state, history, and failure key features, respectively.
Namely:

e &4(ay, k) encourages sampling actions that are similar

to those observed in the demonstrations.

o ws(es(ar,xi, k) —eq(ay, k)) steers the actions toward
those that match the current state of the robot and its
environment.

o Wy (sh(at, h7 k) —e,(ay, k)) promotes temporal con-
tinuity by encouraging the system to follow the action
history

o W (sz(at,z k) — sa(at,k)) allows the system to con-
sider distinct failure cases and, based on the extracted
failure features, steer away from regions that led to
failures.

B. Recovery Model

To synthesize an auxiliary dataset R to learn the recovery
policies, we first relax the recovery definition slightly by
considering all actions dissimilar to the failed one as potential
recoveries. If we further assume that the cause of failure is
static (i.e., repeating the same action in the same state will
fail again), then we define the set of recovery actions as

|z(a, x) — z(a’, x/)|* > 4.,

5
Ix — xF|2 < 6., ©)

acR(z) if {
where al is the action that led to failure, x/ is the cor-
responding state, and J, and §, are thresholds. Intuitively,
if the state of the system has not changed significantly, we
expect the same action to result in failure again.

Now we can construct the recovery dataset by traversing
the available data and accepting every pair that satisfies
(3). However, doing so directly on the main dataset can
be problematic because the dataset is limited and actions
are collected in various states, resulting in a sparse recovery
dataset. To address this issue, we perform data synthesis: we
randomly select states observed in the demonstrations and,
for each state, sample multiple actions such that

Di(xs) = {(a,x,) |a~p"(a|x), x € x, + &,
€. ~N(0,0°T)}. (6)

a8 [8%heatoe

(a) p(ar) (b) p(ar]xt)

(©) p(ac|hf)

(d p(at|zf) (e) Combined

Fig. 2. An illustrative example displays samples generated from multiple distributions learned from the same demonstration sets. The yellow circle marks
the current system state (which later appears more transparent as it becomes part of the history), light blue markers indicate potential samples, dark blue
markers denote the generated samples, and the red marker highlights the failed sample.

Here, &, denotes random noise added to the state. The
corresponding noise estimator is defined as

é(a,x, k) = eq(a, k) + ws (ss(a, x, k) —eq(a, k:)), (7

where the key difference between (7) and @) is the exclusion
of history in (7)), which is omitted to not bias the system
toward past actions and reduce the dimensionality. Addition-
ally, setting ws < 1 encourages the system to explore a
broader range of actions. With this recovery dataset in hand,
we then apply the DDPM method to learn the corresponding
distribution.

1) Failure Key Features: The function z(-) captures the
key features of failed actions. While learning these features
autonomously via latent-space methods would be highly
beneficial, we leave this for future work. Instead, we discuss
three intuitive and practical choices for z(-):

1) Directly using the failed actions: z(af,x/) = a/.

2) Using the final state: z(a/,x/) = xJ., where x/. is

the state reached if af were executed at x'; this can
be readily extracted from demonstrations.

3) Action primitive: z(a’,x’) = m, where m is a

discrete label indicating the action primitive applied
to the system.

Fig. |3| summarizes the overall process in both the offline
and online phases.

IV. EXPERIMENTS

We evaluate CCDP against two baselines: a standard
diffusion policy (DP) and a rejection-sampling variant (DP*).
Demonstrations were generated in simulation using a motion
planner with access to ground-truth task parameters, but
these parameters were not available to the learning methods.
Performance was measured by (i) overall task success and (ii)
adherence to implicit preferences present in demonstrations
(e.g., preferring closer baskets or lighter-hand manipulation).
A failure detection signal was assumed available, but the
specific detector was not part of our method.

Tasks. We considered five representative tasks: 1) Door
Opening with unknown direction, 2) Button Pressing with
uncertain location, 3) Object Manipulation with weight-
dependent strategies, 4) Object Packing with basket capacity
constraints, and 5) Bartender with sequential cup filling.
Findings. Across all tasks, CCDP consistently outperformed
DP and matched or exceeded DP*.

« In button search and packing, CCDP avoided repeated
failures more effectively.

o In manipulation tasks, CCDP balanced success rate with
adherence to implicit preferences, whereas DP favored
the dominant mode and DP* ignored subtle preferences.

« In sequential tasks (packing and bartender), CCDP nat-
urally respected “nearest available” preferences without
explicit rules.

V. DISCUSSION

Our experiments show that CCDP substantially improves
task success over standard diffusion policies while maintain-
ing implicit preferences from demonstrations—something
DP* often fails to preserve. The main distinction is that
DP* relies on positive forcing, constraining sampling to
predefined regions, whereas CCDP applies negative forcing,
excluding only failed regions. This makes CCDP more
flexible and better able to integrate contextual cues during
execution.

A. Limitations and Future Work

The current implementation relies on manually defined
failure features and fixed combination weights. More prin-
cipled approaches—such as automatic feature extraction in
latent space or adaptive weighting—could further improve
robustness. In addition, incorporating offline exploratory
mechanisms to generate richer recovery data is an important
next step.

VI. CONCLUSION

CCDP provides a lightweight, modular way to integrate
failure recovery directly into diffusion policies without re-
quiring labels, simulators, or high-level planners. By lever-
aging only successful demonstrations, it achieves both higher
success rates and better adherence to demonstration pref-
erences across diverse tasks. We see this as a promising
direction for building more adaptable and resilient imitation
learning systems.

REFERENCES

[1] A. Razmjoo, S. Calinon, M. Gienger, and F. Zhang, “Ccdp: Composi-
tion of conditional diffusion policies with guided sampling,” IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS),
2025.

[2] P. Florence, C. Lynch, A. Zeng, O. A. Ramirez, A. Wahid, L. Downs,
A. Wong, J. Lee, I. Mordatch, and J. Tompson, “Implicit behavioral
cloning,” in Conference on robot learning. PMLR, 2022, pp. 158—
168.

Demonstration
(D)

I £q(af, k) -
& (af, xu k)

En (af, hi', k)

Offline Phase)

&, (a’,‘, Zf' k)

Possible
Recoveries (R)

J
Inference \

—_— k:K -0
; 0
Random Noise hi ag ,°’
Xt [— u
f £, (af, Denoisin
2]y \ 9
Key Failure

K Features af , xf Detection /

Fig. 3.

(a) Object Manipulation (b) Button Pressing

(c) Object Packing

Fig. 4. Experimental setups: manipulation, button search, and packing.
Additional tasks include door opening and bartender scenarios.

[3] C. Chi, Z. Xu, S. Feng, E. Cousineau, Y. Du, B. Burchfiel, R. Tedrake,
and S. Song, “Diffusion policy: Visuomotor policy learning via ac-
tion diffusion,” The International Journal of Robotics Research, p.
02783649241273668, 2023.

F. Zhang and M. Gienger, “Affordance-based robot manipulation with
flow matching,” arXiv preprint arXiv:2409.01083, 2024.

J. Lee, J. Hwangbo, and M. Hutter, “Robust recovery controller for a
quadrupedal robot using deep reinforcement learning,” arXiv preprint
arXiv:1901.07517, 2019.

[6] J. Duan, W. Pumacay, N. Kumar, Y. R. Wang, S. Tian, W. Yuan,
R. Kirishna, D. Fox, A. Mandlekar, and Y. Guo, “Aha: A vision-
language-model for detecting and reasoning over failures in robotic
manipulation,” arXiv preprint arXiv:2410.00371, 2024.

W. Huang, F. Xia, T. Xiao, H. Chan, J. Liang, P. Florence, A. Zeng,
J. Tompson, I. Mordatch, Y. Chebotar et al., “Inner monologue:
Embodied reasoning through planning with language models,” arXiv
preprint arXiv:2207.05608, 2022.

[4

[lnam)

[5

—_

[7

—

Schematic overview of the proposed method illustrating the offline and inference phases.

100 100 100 100
100 2 9%

80

D
(=}

I CCDP (ours)
mm DP

N
=}

Success rate (%)

20

DO BP OoM OP BT

(a) Success Rate

100
100 EEE CCDP (ours) 27

= pp
80 Dp*
73

60

40

Implicit Objective (%)

20

opP

(b) Implicit Objective

Fig. 5. Comparison with DP and DP*. CCDP improves success rates across
tasks and better preserves implicit demonstration preferences.

[8] Z. Liu, A. Bahety, and S. Song, “Reflect: Summarizing robot ex-
periences for failure explanation and correction,” arXiv preprint
arXiv:2306.15724, 2023.

[9] S. Niekum, S. Chitta, A. G. Barto, B. Marthi, and S. Osentoski,
“Incremental semantically grounded learning from demonstration.” in

(10]

[11]

[12]

[13]

[14]

[15]

Robotics: Science and Systems, vol. 9. Berlin, Germany, 2013, pp.
10-15607.

E. Triantafyllidis, F. Acero, Z. Liu et al., “Hybrid hierarchical learning
for solving complex sequential tasks using the robotic manipulation
network roman,” Nature Machine Intelligence, vol. 5, pp. 991-1005,
2023.

J. Lee, J. Hwangbo, L. Wellhausen, V. Koltun, and M. Hutter,
“Learning quadrupedal locomotion over challenging terrain,” Science
Robotics, vol. 5, no. 47, 2020.

W. Yu, C. K. Liu, and G. Turk, “Preparing for the unknown: Learning
a universal policy with online system identification,” in Proceedings
of Robotics: Science and Systems, 2017.

N. Liu, S. Li, Y. Du, A. Torralba, and J. B. Tenenbaum, “Com-
positional visual generation with composable diffusion models,” in
European Conference on Computer Vision. Springer, 2022, pp. 423—
439.

J. Ho, A. Jain, and P. Abbeel, “Denoising diffusion probabilistic
models,” Advances in neural information processing systems, vol. 33,
pp. 6840-6851, 2020.

J. Song, C. Meng, and S. Ermon, “Denoising diffusion implicit
models,” arXiv preprint arXiv:2010.02502, 2020.

	INTRODUCTION
	Preliminarily
	Diffusion Policy

	Methodology
	Problem Definition
	Recovery Model
	Failure Key Features

	Experiments
	Discussion
	Limitations and Future Work

	Conclusion
	References

