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Abstract

Research in learning from demonstration has focused
on transferring movements from humans to robots.
However, a need is arising for robots that do not just
replicate the task on their own, but that also interact
with humans in a safe and natural way to accomplish
tasks cooperatively. Robots with variable impedance ca-
pabilities opens the door to new challenging applica-
tions, where the learning algorithms must be extended
by encapsulating force and vision information. In this
paper we propose a framework to transfer impedance-
based behaviors to a torque-controlled robot by kines-
thetic teaching. The proposed model encodes the exam-
ples as a task-parameterized statistical dynamical sys-
tem, where the robot impedance is shaped by estimating
virtual stiffness matrices from the set of demonstrations.
A collaborative assembly task is used as testbed. The
results show that the model can be used to modify the
robot impedance along task execution to facilitate the
collaboration, by triggering stiff and compliant behav-
iors in an on-line manner to adapt to the user’s actions.

1 Introduction
Over the last decade Robotics is addressing new challeng-
ing problems to bring robots closer to humans, as comput-
ers have now become part of our everyday life. It is envis-
aged that robots should collaborate with humans to perform
a large variety of tasks more easily, faster and in a safer way.
To accomplish this goal, robots must be endowed with learn-
ing capabilities allowing them to acquire new knowledge
from examples given by a human or through their own expe-
rience. Learning from demonstration (LfD) is a natural way
to transfer knowledge to robots from human examples (Bil-
lard et al. 2008). Most works have focused on developing
learning algorithms to encode trajectories using vision or op-
tical systems to capture the teacher demonstrations, see e.g.,
(Calinon, Sardellitti, and Caldwell 2010). Nevertheless, the
new variable impedance capabilities of recent robotic arms

∗This work was partially supported by the STIFF-FLOP Euro-
pean project (FP7-ICT-287728), IntellAct European project (FP7-
269959) and the Spanish project PAU+ (DPI2011-27510). L. Rozo
was supported by the CSIC under a JAE-PREDOC scholarship.
Copyright c© 2013, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Figure 1: Top: Two humans assembling a wooden table.
Bottom: demonstration (left) and reproduction (right) of the
impedance-based behavior.

(Rooks 2006; Albu-Schäffer et al. 2007) demand to refor-
mulate these methods in order to exploit their new control
schemes in performing more complex tasks.

In this line, physical human-robot interaction (pHRI) has
arisen a lot of interest recently, with the two challenging
aspects of impedance control and haptic communication.
On the one hand, an increasing effort has been devoted
to exploiting the advantages provided by the impedance-
based control of robots (Hogan 1985). On the other hand,
impedance in humans has also been studied with the aim
of gaining in-depth knowledge of the roles of the muscles,
tendons, brain and spinal cord in modulating impedance
when we interact with the environment (Burdet et al. 2001;
Gomi and Kawato 1996). Also, efforts have been devoted to
mimic human impedance with robots (Ganesh et al. 2010).
In this context, it is desirable to transfer impedance-based
behaviors from humans to robots (Kalakrishnan et al. 2011;
Kronander and Billard 2012). Evrard and Kheddar (2009)
tackled the problem of setting the robot’s role in a collab-
orative lifting task by modifying the impedance controller
parameters. The approach was then extended to let the robot
learn this behavior autonomously from human demonstra-
tions through probabilistic approaches (Calinon et al. 2009;
Gribovskaya, Kheddar, and Billard 2011).

The second challenge in pHRI is the haptic communica-



Figure 2: Each assembly task is characterized by different
sequences, positions and orientations of components, with
haptic and movement patterns that are specific to each item.

tion between the partners. When physical interaction takes
place, forces-torques sensed by the partners constitute a very
rich and valuable communication channel which is used to
recognize and/or predict intentions as well as to determine
the role of each participant in the task (Evrard and Khed-
dar 2009; Groten et al. 2013; Reed and Peshkin 2008). The
challenges from the robot side are to distinguish the haptic
signals related to the task from those communicating inten-
tions, and to anticipate the human actions using information
about the dynamics of the task and the force-based percep-
tions generated along it (Thobbi, Gu, and Sheng 2011).

In this paper, we are concerned with learning collabora-
tive impedance-based skills1 using visual and haptic infor-
mation, where the robot behavior is conditioned by task vari-
ables as well as by its haptic perceptions. We thus require a
model that can learn impedance behaviors from a set demon-
strations, where the model is modulated by haptic and vision
information. The proposed approach is tested in a collabora-
tive assembly of a wooden IKEA table. In the learning phase
two humans perform the task, where one is kinesthetically2

guiding the robot to demonstrate the robot’s role. The com-
pliance behavior of the person holding the table changes to
allow his/her partner to perform his/her corresponding sub-
task more easily (see Figure 1). During reproduction, the
robot replaces the user holding the table by automatically es-
timating the levels and shape of stiffness ellipsoid required
during the interaction.

The remainder of the paper is organized as follows: Sec-
tion 2 explains the learning algorithm and the compliance
level estimation method. Section 3 describes the collabora-
tive task and the experimental setting. Results are shown and
analyzed in Section 4. Finally, conclusions and future work
are presented in Section 5.

2 Proposed approach
We extend the task-parameterized movement learning ap-
proach recently proposed in Calinon et al. (2012) to a task-
parameterized impedance learning problem. This approach
relies on a statistical representation of dynamical systems
that can be modulated with respect to task variables repre-
sented as candidate frames of reference. The model is here

1Here, impedance-based skill refers to different stiffness levels
that a robot needs to accomplish a given task.

2The term refers to the procedure where the user is holding the
robot, which is gravity compensated at its links, and moves it along
the trajectories that need to be followed to accomplish the task.

extended to force-based impedance behaviors requiring to
adapt the stiffness of virtual springs in Cartesian space driv-
ing the robot’s behavior.

2.1 Task-parametrized Gaussian mixture model
When robots manipulate objects, their movements may
largely depend on the given goals and object poses, which
can be defined through reference frames. Namely, the robot
motion is conditioned by a set of task variables represent-
ing the coordinate systems of relevant frames of reference.
For generalization purposes, it is desirable to have a model
enclosing different movements as a function of the these
variables, instead of representing each one with a different
model. The proposed approach relies on Gaussian product
properties to modulate the centers and covariance matrices
of a Gaussian mixture model (GMM). The advantages of
this approach compared to other task-parameterized mod-
els such as the parametric Hidden Markov Model (PHMM)
(Wilson and Bobick 1999) are discussed in Calinon et al.
(2012).

Formally, each demonstration m ∈ {1, . . . ,M} contains
Tm datapoints forming a dataset of N datapoints {ξn}Nn=1

with N =
∑M

m Tm. Each ξn ∈ RD is associated with
task variables {An,j , bn,j}NPj=1 representing NP candidate
frames of reference, with transformation matricesAn,j , and
offset position vectors bn,j . D is the datapoint dimensional-
ity, and the indexes n and j represent the time step and the
candidate frame, respectively.

The parameters of the model are {πi,Zµ

i,j ,Z
Σ

i,j}, rep-
resenting respectively the mixing coefficients, centers and
covariances matrices for each frame j and mixture compo-
nent i. With this model, for an observation of frames at itera-
tion n, the resulting center µn,i and covariance matrix Σn,i

of each component i are computed as products of linearly
transformed Gaussians

N (µn,i,Σn,i)=

NP∏
j=1

N
(
An,jZ

µ

i,j+bn,j , An,jZ
Σ

i,jA
>
n,j

)
.

By using the product property of normal distributions, the
above equation is computed as

µn,i = Σn,i

NP∑
j=1

(An,jZ
Σ

i,jA
>
n,j)

−1
(An,jZ

µ

i,j+bn,j),

Σn,i =
( NP∑

j=1

(An,jZ
Σ

i,jA
>
n,j)

−1
)−1

. (1)

The parameters of the model are iteratively estimated with
the following EM procedure. In the E-step, (1) are used as
temporary Gaussian parameters to compute the likelihood.

E-step:

hn,i =
πiN (ξn|µn,i,Σn,i)∑NK

k πkN (ξn|µn,k,Σn,k)
. (2)

M-step:

πi =

∑
n
hn,i

N
, Zµ

i,j=

∑
n
hn,i A

−1
n,j [ξn − bn,j ]∑
n
hn,i

,



ZΣ

i,j=

∑
n
hn,i A

−1
n,j [ξn−µ̃n,i,j ][ξn−µ̃n,i,j ]

>A−>
n,j∑

n
hn,i

,

with µ̃n,i,j=An,jZ
µ

i,j+bn,j . (3)

Note that for force-based tasks, the datapoints, centers and
covariances can be decomposed into their position, force and
Cartesian torque components

ξn=

ξx

n
ξF

n
ξT

n

, µn,i=

µx
n,i

µF
n,i

µT
n,i

, Σn,i=

Σx

n,i Σ
xF

n,i Σ
xT

n,i

ΣFx

n,i Σ
F

n,i Σ
FT

n,i

ΣTx

n,i Σ
TF

n,i Σ
T

n,i

. (4)

The model parameters are initialized with a k-means pro-
cedure, modified by following a similar task-parametrized
structure. Model selection is compatible with the techniques
employed in standard GMM (Bayesian information crite-
rion, Dirichlet process, etc.).

One novelty with respect to (Calinon et al. 2012) is that
we augment the model with virtual stiffness matrices KP

i
associated to each component i, which will be estimated as
explained in Section 2.2. Thus, the complete set of parame-
ters of the model is {πi, {ZΣ

i,j ,Z
µ

i,j}
Np
j=1,K

P
i }NKi=1. Such ex-

tension allows us to apply the learning model to impedance-
based behaviors transfer. Note that the variables of the task
are obtained from the position and orientation of a set of can-
didate frames to learn the task. In our experimental setup, the
table legs and robot frames define variables in the collabora-
tive assembly task (described later in Section 3).

Fig. 3 illustrates the approach with a simple example. (a)
shows the demonstrations where the robot behaves compli-
antly when another object (the green triangle) is far from its
end-effector, and becomes stiff when the object approaches
it with a specific orientation. (b) displays the two phases of
the task, where the robot motion is driven by a set of virtual
springs connected to the center of the model’s Gaussians.
The mean and covariance vary according to the task vari-
ables (i.e., the object and robot frames), and the influence of
each model component (see Eq. (2)) determines how com-
pliantly the robot behave.

2.2 Stiffness estimation
Several approaches have been proposed to estimate from
collected data the stiffness and damping parameters to con-
trol robots. Erickson, Weber, and Sharf (2003) compared
four different methods to estimate the robot impedance
based on signal processing, adaptive control and recursive
least squares. Flacco and Luca (2011) estimated the non-
linear stiffness of robot joints with flexible transmissions
by using dynamic residual signals along with least-squares
and regressor-based techniques. From a different perspec-
tive, a LfD approach was proposed in Calinon, Sardellitti,
and Caldwell (2010) to find a stiffness matrix using variabil-
ity information extracted from training data in the form of
a GMM, where the stiffness matrix is estimated from the
inverse of the observed covariance in the position space.
Similarly, Lee and Ott (2011) used variability encoded in
the components of an HMM to define a motion refinement
tube that permits a deviation from nominal trajectories for

(a) Demonstrations

(b.1) Compliant phase (b.2) Stiff phase

Figure 3: Simplified impedance behavior learning. (a) 3 dif-
ferent demonstrations showing compliant and stiff phases.
The black line is the robot’s trajectory. (b) Reproduction of
the task, where the robot’s behavior is governed by a 2-states
model with virtual springs connected to the Gaussians cen-
ters. Dark ellipses and thick-line springs represent an acti-
vated Gaussian. The candidate frames are displayed in red
color.

kinesthetic corrections by controlling the stiffness value at
the robot joints level.

Here, we obtain an approximation through an algebraic
closed-form solution to find the closest symmetric positive
semi-definite stiffness matrix of a weighted least-squares
(WLS) estimation. A stiffness matrix KP

i is estimated for
each component i, by assuming that the robot behavior is
driven by a set of virtual springs (similar to Fig. 3)

F n =

NK∑
i=1

hn,i

[
KP

i

(
µx

n,i − xn

)]
, (5)

where F n, µx
n,i and xn are respectively the sensed force,

the positional part of the Gaussians’ centers in the model
(see Eq. (4)), and the robot’s end-effector position at time
step n.

WLS is used to compute a first estimate K̃
P

i =[
(X>

iW iXi)
−1X>

iW iF
]

of the stiffness matrices by
concatenating all the N datapoints in matrices Xi =[
(µx

1,i − x1), . . . , (µ
x
N,i − xN )

]>
and F , with a weight-

ing matrix W i = diag([h1,i, h2,i, . . . , hN,i]) (see Eq. (2)).
Such estimate does not necessarily comply with the sym-
metric positive semi-definite constraints of a stiffness ma-
trix. Therefore, we resort to the formulation presented in
(Higham 1988), to compute KP

i as the nearest symmetric
positive semi-definite (SPSD) matrix to K̃

P

i according to
the Frobenius norm, computed as

KP
i =

B+H

2
, B=

K̃
P

i +(K̃
P

i )
>

2
, H=V ΣV>. (6)



Table 1: Learning and reproduction phases.
1. Task demonstrations

- Determine NP (number of frames or task variables)
- ∀n ∈ {1, . . . , N}, collect ξn and {An,j , bn,j}NPj=1

2. Model fitting
- Determine NK (number of components of the model)
- Use Eq. (3) to learn {πi, {Zµ

i,j ,Z
Σ

i,j}NPj=1}NKi=1

3. Stiffness estimation
- FindKP

i for each virtual spring by using Eq. (6)
4. Reproduction (for each time step n)

- Collect ξn and {An,j , bn,j}NPj=1

- Estimate {πi,µn,i,Σn,i}NKi=1 through Eq. (1)
- Compute activation weights hn,i using Eq. (2)
- Apply the force command computed from Eq. (5)

H is the symmetric polar factor which can be found from the
singular value decomposition of B, namely, B = UΣV>.
Table 1 summarizes the learning and estimation processes.

3 Collaborative assembly task
We consider a human-robot collaborative task where the
robot’s role is to hold a wooden table while the user’s role
is to screw the four legs to it. Fig. 2 presents an example of
assembly instructions that can be found in “do it yourself”
furniture catalog. Here, two small tables require specific se-
quences of force and movement to get assembled. Learning
such specificities is required for an efficient collaborative as-
sembly. Instead of manually programming those specificities
for each item, we would like the robot to extract those au-
tomatically from a set of demonstrations provided by two
users collaborating together to assemble the different parts
of the table (see Fig. 1). After learning, the task can be re-
produced by a single user, with the robot partner interacting
appropriately with respect to the preferences of the user and
the specificities of the item being assembled. We thus do not
need to provide the robot with information about the points
of assembly, the different options, orientation of table legs,
etc. The robot instead learns these specificities from demon-
strations.

3.1 Experimental setup
We use a KUKA lightweight 7-DoF robot (LWR) (Albu-
Schäffer et al. 2007), with the Fast-Research Interface
(Schreiber, Stemmer, and Bischoff 2010), by using a Carte-
sian impedance controller defined by

τ d = J>F d + V (κVd ) + f(q, q̇, q̈),

where J is the Jacobian of the robot, τ d is the desired torque
vector ,F d the desired force computed from the resulting set
of virtual springs (Eq. 5), V is a damping function with de-
sired damping values κVd and f(q, q̇, q̈) the dynamic model
of the robot.3

3Note that we only control the Cartesian position of the robot
while the rotational DOF are set to be fixed during the reproduction
phase.

User reorienting table User screwing Leg 2

Figure 4: Reproduction results at different phases of the
interaction. For each graph, the projection of the model’s
Gaussians in the tool’s frame (as ellipses) is shown on the
left, while the right part shows the trace of the resulting stiff-
ness matrix. The black dotted line represents the leg’s trajec-
tory, the table is shown in yellow with its 4 threads and the
brown cross corresponds to the current position of the leg.

The position and orientation of the table legs are tracked
with a marker-based NaturalPoint OptiTrack motion capture
system, composed of 12 cameras working at a rate of 30
fps. A transformation matrix is computed to represent the
leg configuration in the fixed robot frame OR, from which
bleg

n and Aleg

n define the Cartesian position and the orien-
tation of the leg as a rotation matrix, respectively. During
both demonstration and reproduction phases, {Aleg

n , bleg

n }
are recorded at each time step n to determine the task vari-
ables. Lastly, the other candidate frame {AR

n, b
R

n} define the
robot’s fixed frame of reference.4

The robot is equipped with a six-axis force-torque sensor
(ATI Mini45) attached between its wrist and the wooden ta-
ble, measuring the interaction forces generated while mov-
ing the table and screwing the legs. In order to extract the
forces generated by the interaction between the partners
through the table, it is necessary to remove other signals
from the sensor readings. During the demonstration and re-
production stages, we consider that the sensor readings are
composed of the noise, the load mass effects and the exter-
nal applied forces, the latter corresponding to the interaction
between the human and the table. Moreover, we assume that
the interaction does not generate high linear/angular veloci-
ties or accelerations, so that the dynamical components can
be neglected, similarly to Rozo, Jiménez, and Torras (2010).

3.2 Task description
Two candidate frames (NP = 2) describe the task variables
in the experiment:OR and the leg frameOL. We assume that
one leg is used and tracked at a time. Let us define DL and
DT as the human user and the robot, respectively (see Fig.
1). The collaborative scenario consists of screwing the legs
at the four corresponding positions on the table. DT is first
compliant to allow DL to move the table freely (compliant
phase) until comfortable position and orientation are found
for the work to be performed next. When DL grasps a leg
and starts inserting it into the screw thread in the table, DT

adopts a stiff posture, holding the table to facilitateDL’s part

4A 3D coordinate frame is replicated for the variables x, F and
T , the offset is only set to x.
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of the task (stiff phase).
Note that the combination of vision and haptic informa-

tion is fundamental for this task. If only vision is used, the
robot cannot distinguish the phase during which the user
aligns the screw with the thread. Here, DT should instead
regulate its stiffness in accordance with the sensed force pat-
tern. If DT ’s behavior was based only on forces, the collab-
oration could fail because DT could not distinguish which
forces correspond to interaction withDL and which are pro-
duced by the screwing actions. This can be problematic be-
cause these patterns might be similar in some situations.
Both perception channels are thus needed to learn how the
impedance behavior should be shaped.

4 Results
A model of five components (NK = 5) was trained with
sixteen demonstrations (i.e., each leg is assembled four
times to its corresponding thread with specific vision and
force patterns). The resulting model automatically discov-
ered four stiff components corresponding to the four screw-
ing phases, with the remaining component representing the
compliant behavior. Each “stiff component” is characterized
by the force-torque pattern and the relative position of the
leg with respect to the robot tool frame, which are different
for each leg. The “compliant component” encodes the re-
maining points in the data space, i.e., the interaction forces-
torques as well as the varying robot end-effector and leg po-
sitions. Fig. 4 shows that the Gaussian corresponding to the
compliant phase is already spatially distinguishable from the
Gaussians encoding the stiff behaviors during the screwing
processes (four in this case). Note that the Gaussians in the
model representing the stiff phases show an elongated shape
changing its orientation during the task. Such type of time-
varying information encapsulated in the covariance matrices
cannot be encoded by using the classic PHMM (no covari-
ance parameterization).

Once the model is learned, the stiffness estimation is car-
ried out as described in Section 2.2. In this experiment a
stiffness matrix is locally associated with each component in
the model, describing a virtual spring connected to the cen-
ter of the Gaussian. During reproduction, a force command
is estimated as a combination of the virtual springs (see Eq.
5).
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Figure 6: Resulting stiffness matrix trace described by
KP =

∑NK
i hn,iK

P
i (top), and components influence on

the stiffness (bottom). Each plot displays how the weight be-
longing to each component changes over time – between 0
and 1 – showing its influence on the WLS-based estimation.
The activated component at the stiff phase relies on the leg
to be assembled (dashed lines), while the compliant com-
ponent is activated regardless of the leg (dotted line). The
deactivated components – whose weights are zero – are not
shown in the graphs to emphasize the components partici-
pating in the current demonstration.

The proposed approach was compared to the stiffness es-
timation procedure based on the inverse of the observed co-
variance (Calinon, Sardellitti, and Caldwell 2010) (see Fig.
5), by computing the inverse of the sub-matrix Σx

n,i for each
Gaussian i at each time step n. A weighted average stiffness
KP

Inv is then calculated. This is compared to KP
Frb obtained

as described in Section 2.2. With our training set, both ap-
proaches estimate the different stiffness levels appropriately.
However, the estimate of Calinon, Sardellitti, and Caldwell
(2010) has the disadvantage that it takes only into account
the positional information from the data, whose variability
can sometimes be too weak if only a few number of demon-
strations are considered. In the experiment, the users covered
various portions of the workspace. In a more realistic sce-
nario, the users might not be aware of this scaffolding teach-
ing procedure, and a smaller number of datapoints might
be acquired. In such situation, variability information may
not always be sufficient to estimate stiffness information. In
contrast, the approach that we adopt in this paper does take
into consideration the haptic inputs in the estimation pro-
cess. Fig. 5 displays the trace of the estimated stiffness ma-
trices for each Gaussian, comparing the results obtained by
both approaches. The ratio between the stiff and compliant
values (computed from the matrix traces) is higher using the
proposed approach (10.12 as average) than those obtained
from the approach based on position variability (5.19 as av-
erage), which allows a better clamping of the robot stiffness
considering the obtained maximum and minimum values.
This indicates that the difference between the compliant and
stiff levels is more pronounced when the estimation process
is based on the haptic data.

Previous experiments with force and position data have
shown that it was often more challenging to exploit force
recordings than positions in practice, mostly due to the
lower accuracy of the sensors and disturbing forces (Rozo,
Jiménez, and Torras 2013). However, a small variability has
been observed for force signals in the second phase of the
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Figure 7: Estimated stiffness along the Cartesian axes of the
robot (represented as an envelope surrounding the repro-
duced trajectory) and the corresponding force-torque pro-
files. The envelopes (light color area) in the first row show
the robot compliance (the wider the zone is, the more com-
pliant the robot is). When the envelope is wide, the robot can
be moved easily by DL, while narrow envelope represents
the table holding phase with high stiffness.

task where the leg is screwed to the table. We attribute this
low variability to two main factors: 1) the force signals pre-
processing and 2) the fact that our experiment protocol fa-
cilitated the collaborative task to the users, which resulted
in high consistency in the demonstrations. The two users
demonstrated the collaborative assembly without talking,
but by using their hands and their eyes. During reproduction,
the robot however only had access to a limited subset of hap-
tic and vision cues. For example, the users could observe the
changes of posture and even the gaze of each other (Strabala
et al. 2012; Mutlu, Terrell, and Huang 2013), which likely
provided additional cues to jointly agree about the change
of stiffness behaviors.

We tested the reproduction and generalization capabilities
of the system by carrying out the assembly process for all the
legs. In Fig. 6, we can observe how the compliant component
(purple dotted line) is influential during the first half of the
reproduction, dominating the other components. After this,
the robot becomes stiff, with specific patterns depending on
which leg is being screwed. This means that not all the com-
ponents influence the robot impedance at the stiff phase, but
mostly the Gaussian encoding the stiff behavior for the cor-
responding leg (as observed from the different colors repre-
senting the different stiff components), while the remaining
activation weights stay close to zero.

The proposed approach does not only learn when to
change the compliance in an on/off fashion, but also the
manner to switch between the two behaviors. The sharp
stiff/compliant difference is a characteristic of the collab-
orative task presented here (mostly binary, but with smooth
transitions between the two compliance levels), which is cor-
rectly learned by the proposed approach. Fig. 7 shows the
resulting stiffness matrix for the demonstration correspond-
ing to leg 1, where the Cartesian robot position is shown
along with the corresponding stiffness for each axis. We can
see how these values vary along the different Cartesian axes,

(a) Leg away from the threads (b) Leg turned upside-down

Figure 8: Situations not shown in the demonstration phase.
Both correctly result in the robot behaving compliantly.

which is useful when the robot behavior demands to be stiff
in a specific direction and compliant in the others.

In order to show the relevance of combining visual and
haptic data for generalizing the learned task, two situa-
tions that did not appear in the demonstrations were pre-
sented to the robot (Fig. 8). First, DL tried to screw
the leg at the center of the table, which means that
the leg was placed at an incorrect position. In the sec-
ond situation, DL positioned the leg in one of the table
threads but the leg was tilted, making the screwing pro-
cess unfeasible. In both cases, the robot behaved com-
pliantly as expected, because neither corresponded to a
correct screwing phase. A video of the experiment and
the task-parameterized GMM sourcecode are available at
http://programming-by-demonstration.org/AAAI2013/

5 Conclusions and Future Work
We presented a learning framework to encode and repro-
duce impedance behaviors using a task-parameterized sta-
tistical dynamical system. Our method allows to encode be-
haviors that rely on task variables, yielding only one model
to encode the whole task. In contrast to previous approaches
where robot impedance is learned from position variabil-
ity, our framework extracts the impedance behavior from the
manner in which the teacher behaves during the task, relying
on recorded force patterns and visual information. We use
forces not only to encode the skill, but also to estimate the
stiffness of virtual springs governing the collaborative be-
havior, thus emphasizing that interaction forces-torques vary
during different phases of the task.

The proposed approach is used to learn a reactive behav-
ior, where the model automatically provides soft clusters
of the different impedance behaviors that the robot might
adopt. They are estimated as impedance controllers whose
parameters are learned from demonstrations and associated
with each model component. We plan in future work to pro-
vide the robot with a more active role. Initially, the roles
would be considered as time independent. Then, more com-
plex task preferences between the partners would be ac-
quired, where the robot could adopt a proactive role in the
collaboration. We devise to exploit the weighting mecha-
nism in the model to influence the switching from reactive
to proactive behaviors, by anticipating the next part of the
task depending on user preferences. For example, if the user
holding the leg is too far from the robot, it could take the
initiatives to anticipate the movement and move to the leg.
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