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Abstract— Posture body variation is one of the ways in which
humans skillfully and naturally augment their motion and
strength capabilities along specific task-space directions in order
to successfully perform complex manipulation tasks. Posture
variation also has a significant role in robot manipulation,
where manipulability arises as a useful criterion to analyze
and control the robot dexterity as a function of its joint con-
figuration. In this context, this paper introduces the promising
idea of manipulability transfer, a method that allows robots
to learn and reproduce desired manipulability ellipsoids from
expert demonstrations. The proposed framework is built on a
tensor-based formulation of Gaussian mixture model that takes
into account that manipulability ellipsoids lie on the manifold
of symmetric positive definite matrices. This geometry-aware
method is used to design a manipulability-based redundancy
resolution that allows the robot to modify its posture so that
its manipulability ellipsoid coincides with the desired one.
Experiments in simulation validate the functionality of the
proposed approach, which extends the robot learning capability
beyond trajectory, force and impedance learning approaches.

I. INTRODUCTION

When we perform a manipulation task, we naturally place
our arms (and body) in a posture that is best suited to carry
out the task at hand. Such posture variation is a means
through which the motion and strength characteristics of the
arms are made compatible with the task requirements. For
example, human biomechanics strongly influence the motion
planning of reaching tasks [1]. Also, humans change their
posture to be mechanically most resistant to potential pertur-
bations coming from obstacles occupying the workspace [2].
Therefore, there exists evidence that the human body posture,
governed by motor control commands, plays a relevant role
on how humans perform manipulation tasks.

The robotics community has also been aware that posture
variation can have a significant impact on manipulation. For
instance, the robot joint configuration may greatly affect the
ability to maneuver in the workspace. Hence, measures that
determine the robot capabilities to perform a task are of high
interest. One of the well-established tools for motion and
dexterity analysis of robot manipulators is the so-called ma-
nipulability ellipsoid [3]. This geometric measure indicates
the ability to arbitrarily perform motion and exert force along
the different task directions in a given joint configuration.

The manipulability ellipsoid has been used to measure
the compatibility of robot postures with respect to fine and
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coarse manipulation [4], to improve minimum-time trajectory
planning tasks through a manipulability-aware inverse kine-
matics algorithm [5], and to support a grasp selection process
that favors high manipulability in the robot workspace [6].
Other works have focused on maximizing the manipula-
bility ellipsoid volume in trajectory generation algorithms
[7], and task level robot programming frameworks [8], to
obtain singularity-free joint trajectories and high task-space
dexterity. However, the maximization of only the volume of
an ellipsoid to achieve the maximum dexterity in motion may
cause a reverse effect on the flexibility in force [9].

In contrast to the foregoing approaches that do not spec-
ify a desired robot manipulability for the task, Lee et al.
proposed an optimization method for selecting a reaching
posture for a humanoid robot that guarantees high arm
manipulability [10]. The desired manipulability is manu-
ally specified from a set of ellipsoid volumes designed
in accordance to the reaching task requirements. Similarly,
a series of desired manipulability ellipsoids is predefined
according to Cartesian velocity and force requirements in
a dual-arm manipulation task [9]. Note that both [9] and
[10] predetermined the task-dependent robot manipulability,
which required a meticulous and demanding analysis about
the motion that the robot needed to perform, which becomes
impractical when the robot is required to carry out a large
set of different tasks.

In this paper we introduce the novel idea that
manipulability-based posture variation for task compatibility
can be addressed from a robot learning from demonstration
perspective. Specifically, we cast this problem as a manipu-
lability transfer between a teacher and a learner. The former
demonstrates how to perform a task with a desired time-
varying manipulability profile, while the latter reproduces the
task by exploiting its own redundant kinematic structure so
that its manipulability ellipsoid matches the demonstration.
Unlike classical learning frameworks that encode reference
position, velocity and force trajectories, our approach offers
the possibility of transferring posture-dependent task require-
ments such as preferred directions for motion and force
exertion in operational space, which are encapsulated in the
demonstrated manipulability ellipsoids.

This idea opens two main challenges, namely, (i) how
to encode and retrieve manipulability ellipsoids, and (ii)
how to exploit the robot redundancy to match the desired
time-varying manipulability during a manipulation task. To
address the former problem, we propose a tensor-based
formulation of Gaussian mixture model (GMM) and Gaus-
sian mixture regression (GMR) that take into account that



manipulability ellipsoids lie on the manifold of symmetric
positive definite (SPD) matrices (see Section II for a full
description of the model). The latter challenge is solved
through manipulability-based redundancy resolution, where
we employ a null-space posture optimization built on a cost
function that measures the distance between two manip-
ulability ellipsoids in the SPD manifold (see Section III
for details). We evaluate the functionality of the proposed
approach in a simulated tracking task where a robot is
required to track a Cartesian position trajectory and a time-
varying desired manipulability profile (see Section IV).

II. LEARNING MANIPULABILITY ELLIPSOIDS

The first open problem in manipulability transfer is to
appropriately encode and retrieve manipulability ellipsoids.
In order to describe how we tackle this problem, let us
first formally introduce the manipulability ellipsoids concept,
followed by the mathematical formulation of a Gaussian
mixture model that encodes a distribution of manipulability
ellipsoids over the manifold of SPD matrices. After, we de-
scribe how desired manipulability ellipsoids can be retrieved
via Gaussian mixture regression acting on the SPD manifold.

A. Manipulability ellipsoids

Velocity and force manipulability ellipsoids introduced
in [3] are kinetostatic performance measures of robotic
platforms. They indicate the preferred directions in which
force or velocity control commands may be performed at
a given joint configuration. More specifically, the velocity
manipulability ellipsoid describes the characteristics of fea-
sible motion in Cartesian space corresponding to all the unit
norm joint velocities. The velocity manipulability of an n-
DOF robot can be found by using the kinematic relationship
between task velocities ẋ and joint velocities q̇,

ẋ = J(q)q̇, (1)

where q ∈ Rn and J ∈ R6×n are the joint position and
Jacobian of the robot, respectively. Moreover, consider the
set of joint velocities of constant (unit) norm ‖q̇‖2 = 1
describing the points on the surface of a hypersphere in
the joint velocity space, which is mapped into the Cartesian
velocity space R6 with

‖q̇‖2 = q̇>q̇

= ẋ>(J†)>J†ẋ

= ẋ>(JJ>)†ẋ, (2)

where † indicates the pseudo-inverse of a matrix.1 Equation
(2) represents the robot manipulability in terms of motion,
indicating the flexibility of the manipulator in generating
velocities in Cartesian space.2 Note that the major axis of
the velocity manipulability ellipsoid Υ = (JJ>)† indicates
the direction in which the greater velocity can be generated,

1Note that an additional scaling of the joint velocities may be included
to consider actuator boundaries.

2Dually, the force manipulability ellipsoid can be computed from the
static relationship between joint torques and Cartesian forces [3].

Fig. 1: Representations of the SPD manifold S2
++ embedded in

its tangent space Sym2. One point on the graph corresponds to
a matrix

(
α β
β γ

)
∈ Sym2. Points in the manifold and tangent

space are represented respectively by black and colored dots. Left:
difference between a geodesic (black curve) and an Euclidean path
(blue dash line) between two SPD matrices. Right: exponential,
logarithm maps and parallel transportation on S2

++. Points on the
tangent space of Σ and Λ are represented respectively by red and
green dots.

which is also the direction in which the robot is more
sensitive to perturbations. To better understand this, one
needs to consider that the force manipulability has the same
principal axes of the velocity manipulability, but with lengths
(i.e., eigenvalues) that are inversely proportional because of
the duality of velocity and force (see [4] for details).

Note that Υ belongs to the set of symmetric positive
definite matrices SD++ which describe the interior of the
convex cone, and consequently the manipulability transfer
framework must consider these particular characteristics in
order to encode and reproduce proper manipulability ellip-
soids. To successfully do so, we propose a geometry-aware
formulation of both GMM and GMR as described below.

B. Manifolds of symmetric positive definite (SPD) matrices

The set of D×D SPD matrices SD++ is not a vector
space since it is not closed under addition and scalar product
[11], and thus the use of classical Euclidean space methods
for treating and analyzing these matrices is inadequate. A
compelling solution is to endow these matrices with a Rie-
mannian metric so that these form a Riemannian manifold.3

This metric permits to define lengths of curves in the mani-
fold. These curves, called geodesics, are the generalization of
straight lines to Riemannian manifolds. Similarly to straight
lines in Euclidean space, geodesics are the minimum length
curves between two points on the manifold (see Fig. 1).

A Riemannian manifold M is a mathematical space for
which each point locally resembles a Euclidean space. For
each point p ∈ M, there exists a tangent space TpM
equipped with a positive definite inner product. In the case of
the SPD manifold, the tangent space at any point Σ ∈ SD++

is identified by the space of symmetric matrices SymD. The
space of SPD matrices can be represented as the interior of
a convex cone embedded in its tangent space SymD (see
Fig. 1). Note that the existence of tangent spaces is what

3The original cone of SPD matrices has been changed into a regular and
complete (but curved) manifold with an infinite development in each of its
D(D + 1)/2 directions [11].



allows us to carry out tractable statistics on M. To utilize
these tangent spaces, we need mappings back and forth
between TpM andM, which are known as exponential and
logarithm maps.

The exponential map ExpΣ : TΣM→M maps a point L
in the tangent space to a point Λ on the manifold, so that it
lies on the geodesic starting at Σ in the direction L and such
that the distance between Σ and Λ is equal to the distance
between Σ and L. The inverse map is called the logarithm
map LogΣ : M → TΣM (see Fig. 1). Specifically, the
exponential and logarithm maps on the SPD manifold are
computed as (see [11] for details)

Λ = ExpΣ(L) = Σ
1
2 exp(Σ−

1
2LΣ−

1
2 )Σ

1
2 , (3)

L = LogΣ(Λ) = Σ
1
2 log(Σ−

1
2 ΛΣ−

1
2 )Σ

1
2 . (4)

Another useful operation over manifolds is the parallel
transport ΓΣ→Λ : TΣM → TΛM, which moves elements
between tangent spaces such that the angle between two
elements in the tangent space remains constant (see Fig. 1).
The parallel transport of V ∈ TΣSD++ to TΛSD++ is given by

ΓΣ→Λ(V ) = AΣ→Λ Σ A>Σ→Λ, (5)

with AΣ→Λ = Σ
1
2 exp( 1

2Σ−
1
2V Σ−

1
2 )Σ−

1
2 (see [12] for

details). This operation is exploited when it is necessary to
move SPD matrices along a curve on the nonlinear manifold.

Notice that SPD matrices, or more broadly, any kind
of matrix can be seen as 2nd-order tensor. Tensors are a
generalization of matrices to higher order, which allows us
to represent the computation of covariance of SPD matrices
as a 4th-order covariance tensor S ∈ RD×D×D×D of N
matrices Xn that is defined as

S =
1

N − 1

N∑
n=1

Xn ⊗Xn, (6)

where ⊗ denotes the tensor product between two tensors,
which is a generalization of the outer product to tensors.

As described in [13], we denote element (p, q, i, j) of a
4th-order tensor S by Sijpq with two covariant indices p, q
and two contravariant indices i, j. An element (i, j) of a
matrix X is denoted by Xij with two covariant indices i, j.
A tensor contraction between two tensors is performed when
one or more contravariant and covariant indices are identical.
For example, the tensor contraction of S ∈ RD×D×D×D and
X ∈ RD×D is written as

SX =

D∑
i=1

D∑
j=1

SijpqXij . (7)

Using 4th-order covariance tensors, the tensor-variate normal
distribution of a random 2nd-order tensor X with mean M
and covariance S is expressed by [14]

N (X|M ,S) =
1√

(2π)D̃|S|
e−

1
2 (X−M)S−1(X−M), (8)

where the scalar value (X −M)S−1(X −M) is com-
puted using the tensor contraction defined previously, and
D̃ = D +D(D − 1)/2.

C. Gaussian Mixture Model on SPD manifolds

Similarly to multivariate distribution (see [15], [16], [17]),
a tensor-variate distribution maximizing the entropy in the
tangent space is approximated by

NM(X|M ,S) =
1√

(2π)D̃|S|
e−

1
2 LogX(M)S−1 LogX(M),

(9)
where X ∈ TMM, M ∈ M is the origin in the tangent
space and S ∈ TMM is the covariance tensor.

Similarly to the Euclidean case, a GMM on the SPD
manifold is defined by

p(X) =

K∑
k=1

πkNM(X|Mk,Sk), (10)

with K being the number of components of the model,
and πk representing the priors such that

∑
k πk = 1. The

parameters of the GMM on the manifold are estimated by
Expectation-Maximization (EM) algorithm.

The responsibility of each component k is computed in
the E-step as:

p(k|Xi) =
πk NM(Xi|Mk,Sk)∑K
j=1 πj NM(Xi|Mj ,Sj)

, (11)

Nk =

N∑
i=1

p(k|Xi). (12)

During the M-step, the mean Mk is first updated iteratively
until convergence for each component. The covariance tensor
Sk and prior πk are then updated using the new mean:

Mk ←
1

Nk
ExpMk

(
N∑
i=1

p(k|Xi) LogMk
(Xi)

)
, (13)

Sk ←
1

Nk

N∑
i=1

p(k|Xi) LogMk
(Xi)⊗ LogMk

(Xi), (14)

πk ←
Nk
N
. (15)

D. Gaussian Mixture Regression on SPD manifolds

GMR computes the conditional distribution p(XOO|XII)
of the joint distribution p(X), where the sub-indices I and O
denote the sets of dimensions that span the input and output
variables. We use the following block decomposition of the
datapoints, means and covariances:

X =

(
XII 0

0 XOO

)
,M =

(
MII 0

0 MOO

)
,

S =


SIIII 0 0 0
0 SOOII 0 0
0 0 SIIOO 0
0 0 0 SOOOO

 , (16)

where we represent the 4th-order tensor by separating the
different fibers with bars. With this decomposition, manifold



functions can be applied individually on input and output
parts, for example

ExpMk
(X) =

(
ExpMII

(XII) 0
0 ExpMOO

(XOO)

)
.

Similarly to GMR in Euclidean space [18] and in mani-
folds where data are represented by vectors [15], GMR on
SPD manifold approximates the conditional distribution by
a single Gaussian

p(XOO|XII) ∼ N (M̂OO, Ŝ
OO

OO), (17)

where the mean M̂OO is computed iteratively until conver-
gence in its tangent space using

∆k = LogM̂OO(MOO,k)− S̃IIOO,k S̃II−1II,k LogXII
(MII,k),

(18)
M̂OO ← ExpM̂OO

(∑
k

hk∆k

)
, (19)

with hk describing the responsibilities of the GMM compo-
nents in the regression, namely

hk =
πk N (XII|MII,k,SIIII,k)∑K
j=1 πj N (XII|MII,j ,SIIII,j)

. (20)

The covariance Ŝ
OO

OO is then computed in the tangent space
of the mean

Ŝ
OO

OO =
∑
k

hk

(
S̃OOOO,k − S̃IIOO,kS̃

II−1
II,k S̃OOII,k + ∆k ⊗∆k

)
,

(21)
where S̃ is the parallel transported covariance tensor

S̃ = ΓM→X̂(S) with X̂ =

(
XII 0

0 M̂OO

)
. (22)

Note that the definition of the tangent space TpM (which
has the structure of a Euclidean vector space) is what
allow us to compute the conditional distribution above. Also
notice that to parallel transport a 4th-order covariance tensor
S ∈ RD×D×D×D, the covariance is first converted to a 2nd-
order tensor Σ ∈ RD̃×D̃ with D̃ = D + D(D − 1)/2, as
proposed in [14]. We can then compute its eigentensors Vk,
which are used to parallel transport the covariance matrix
between tangent spaces [19]. Let Ṽk = ΓM→X̂(Vk) be the
k-th parallel transported eigentensor with (5) and λk the k-
th eigenvalue. The parallel transported 4th-order covariance
tensor is then obtained with (see [20] for more details)

ΓM→X̂(S) =
∑
k

λkṼk ⊗ Ṽk. (23)

III. MANIPULABILITY-BASED OPTIMAL
REDUNDANCY RESOLUTION

Given a desired manipulability ellipsoid profile and de-
sired reference trajectories in the form of Cartesian position
or force, the goal of the robot is to reproduce the task
by tracking these reference trajectories while exploiting its
redundancy to maximize the match between the current
manipulability ellipsoid and the desired one. In this situation,

Fig. 2: Illustration of the manipulability-based redundancy reso-
lution. Two different cases are shown where both initial robot
configuration and desired manipulability change. The robot color
goes from light gray to black to show the evolution of the posture.
Initial, final, and desired manipulability ellipsoids are respectively
depicted in blue, red, and green. The top row shows close-up plots
corresponding to the initial and final manipulability ellipsoids (left
and right graphs, respectively).

we assume that the tracking task is a high-priority objec-
tive while the manipulability ellipsoid transfer is assigned
a secondary role. The major difficulty in this problem is
the selection of the appropriate criterion for the null-space
posture optimization process.

Formally, consider a redundant robot with rigid body
dynamics equations given in the form

H(q)q̈ +C(q, q̇)q̇ + b(q) = τ , (24)

where H(q), C(q, q̇) and b(q) are the inertia matrix, the
vector of centrifugal and Coriolis forces, and the gravity
components, respectively. Additionally, the pose of the robot
in joint space is denoted by q, while τ represents the
actuation torques vector. Let us also define the desired joint
torque vector τd as

τd = J>F + (I − J>J̄>)τN , (25)

where J is the Jacobian of the robot, F is the end-effector
force designed to track the reference Cartesian trajectories,
J̄ is the inertia-weighted pseudoinverse of J , and τN a
desired null-space torque vector [21]. The right-hand side
of (25) does not produce any force, and thus motion, in
the task space, and allows us to find a τN such that
the internal motion will move the robot towards a posture
where the match between its manipulability ellipsoid and the
desired one is maximum. In order to do so, τN is designed
to minimize a cost function that measures the similarity
between manipulability ellipsoids.

In this paper we propose to use a geometry-aware criterion
for computing the desired null-space vector. Specifically, we
define a cost function

gt(q) = log det

(
Υ̂t + Υt(q)

2

)
− 1

2
log det

(
Υ̂tΥt(q)

)
,

(26)



(a) (b) (c)

Fig. 3: Four demonstrations of a 3-DOF planar robot tracking a C-shape trajectory. (a) shows the path followed by the robot end-effector
(light gray solid lines) and the manipulability ellipsoids at different time steps for all the demonstrations. (b) displays the demonstrations
independently to exhibit more clearly the differences produced in the manipulability ellipsoids due to the robot posture variation across
demonstrations. (c) shows the demonstrated manipulability ellipsoids over time (top in color, bottom in gray), and the centers Mk of the
4-states GMM in the SPD manifold (bottom). Position x and time t are given in centimeters and seconds, respectively.

where Υ̂t is the desired manipulability ellipsoid retrieved by
GMR at each time step t (using (18) and (19)), and Υt(q)
denotes the current robot manipulability ellipsoid. Note that
(26) describes a distance-like function on the open cone of
SPD matrices, which was introduced in [22] as the Stein
divergence. The squared root of this function works as a
metric on SPD matrices and is preferred over the classical
Riemannian distance because it is cheaper to compute, and
so is its derivative. Moreover, (26) still considers the non-
Euclidean geometry of SD++, therefore being consistent with
the learning framework introduced in Section II.

Then, the manipulability-based redundancy resolution is
carried out by computing a null-space torque vector τN
that is proportional to the negative gradient of (26), that is
τN = −α∇gt(q), which leads to the desired joint torques

τd = J>F − (I − J>J̄>)α∇gt(q). (27)

Note that other redundancy resolution schemes at velocity
and acceleration levels can alternatively be used for control-
ling the robot [21].

To show the effectiveness of the proposed redundancy
resolution based on manipulability ellipsoids, we carried
out experiments where a simulated 4-DOF planar robot is
required to keep its end-effector at a fixed Cartesian position
while moving its joints to make its manipulability ellipsoid
coincide with that of the demonstration. Figure 2 shows how
the manipulator configuration is successfully adjusted so that
gt(q) is minimum, that is Υt(q) ≈ Υ̂t. These results show
that Stein divergence is a suitable criterion for driving the
manipulability-based redundancy resolution. This method,
combined with the learning framework introduced in Section
II, makes manipulability transfer possible as shown next.

IV. EXPERIMENTS
In this section we illustrate and evaluate the proposed

approach using a couple of simulated planar robots with

dissimilar embodiments and a different number of articu-
lations. The central idea is to teach a redundant robot to
track a reference trajectory in Cartesian space with a desired
time-varying manipulability ellipsoid. The description of
the experiment, the obtained results and the corresponding
discussion are given in the following paragraphs. Moreover,
source codes of the proposed framework are available at
https://gitlab.idiap.ch/rli/pbdlib-matlab/.

A. Description

For the demonstration, a 3-DOF teacher robot executes
the tracking task four times, from which we extract both
the end-effector position xt and robot manipulability el-
lipsoid Υt(q), at each time step t. The collected time-
aligned data is split in two datasets, namely, Xx∈RD+1×T

and XΥ∈RD+1×D+1×T , where Xx and XΥ denote the
position and manipulability training datasets, with D=2 as
the dimensionality of the task space, and T the total number
of observations. A datapoint of each dataset is described as

Xx
t =

(
t
xt

)
and XΥ

t =

(
t 0
0 Υt(q)

)
.

We trained a classical GMM over the time-driven Cartesian
trajectories Xx and a GMM over the manifold of time-
driven manipulability ellipsoids XΥ, using models with four
components, i.e. K = 4 (the number was selected by the
experimenter).

During the reproduction phase, a 5-DOF student robot
executes the time-driven task by following a desired
Cartesian trajectory x̂t computed from a classical GMR
as x̂t ∼ P(x | t). The robot implements a proportional-
derivative controller in task space that defines the desired
end-effector force F in (27). The robot also varies its
joint configuration according to (27) for matching desired
manipulability ellipsoids Υ̂t ∼ P(Υ|t), estimated by GMR
over the SPD manifold (as explained in Section II-D).



(a) (b) (c)

Fig. 4: Reproduction of a C-shape tracking task with desired robot manipulability. (a) Desired manipulability ellipsoids profile estimated by
GMR (top), and influence of GMM components on the time-driven GMR estimates (bottom), where colors match the distributions shown
in Fig. 3c. (b) Executed Cartesian trajectory (black solid line) given in centimeters, desired and reproduced manipulability ellipsoids (in
green and red, respectively), at different time steps of the task (reference trajectory x̂ coincides with the executed trajectory). (c) Desired
and reproduced manipulability ellipsoids over time (given in seconds). The top plot shows the manipulability ellipsoids match resulting
from the proposed approach. The bottom graph displays the match using the major-axis alignment method in [23].

B. Results

Figure 3 shows the four demonstrations carried out by the
3-DOF robot, where both the Cartesian trajectory and manip-
ulability ellipsoids are displayed. Note that the recorded ma-
nipulability ellipsoids slightly change across demonstrations
as a side effect of the variation observed in both the initial
end-effector position and the generated trajectory. Figure 3c-
bottom displays, over time, the demonstrated ellipsoids (in
gray) along with the centerMk of the four components of the
GMM encoding XΥ. Notice how the first and fourth GMM
components (in blue and red, respectively) satisfactorily
encapsulate the pattern observed in the robot manipulability
at the beginning and end of the demonstrations, in both shape
and orientation.

A successful reproduction of the tracking task with
manipulability-based redundancy resolution is shown in
Fig. 4. Note that the robot is able not only to track the desired
C-shape trajectory, but also to change its posture so that its
manipulability ellipsoid matches that of the demonstration,
in both shape and orientation (see Figs 4b and 4c-top). These
results validate that the proposed approach allows the robot
to learn and reproduce reference trajectories while fulfilling
additional task requirements encapsulated in a profile of
desired manipulability ellipsoids.

In order to show the importance of the proposed geometry-
aware cost function for the redundancy resolution, we com-
pared our approach against a method that relies on the
alignment of the ellipsoids major axis for reproducing de-
sired Cartesian stiffness ellipsoids [23]. Figure 4c shows the
desired and reproduced manipulability ellipsoids using our
approach (top plot) and the major-axis alignment method
(bottom plot). Note that despite the major-axis alignment
method retrieves ellipsoids that are approximately aligned
with the desired manipulability, their shapes significantly
differ for some periods of time (e.g. between time steps
40 and 80). This discrepancy may considerably affect the

robot performance due to the task requirements encapsulated
in the desired manipulability not being fulfilled precisely.
In contrast, our approach offers a more accurate matching
in both shape and orientation because the cost function
(26) takes into account the geometry of manipulability by
measuring the divergence in the SPD manifold. Moreover,
the manipulability-based approach shows a faster conver-
gence than the major-axis alignment method, as shown in
Fig. 5, where the α value was set to provide the fastest
convergence rate for each algorithm, while ensuring stable
reproductions starting from the same joint configuration. This
faster convergence can be attributed to the fact that the
gradient of the manipulability-based criterion (26) is more
informative about the joint motions, favoring an accurate
matching between manipulability ellipsoids.

C. Discussion

The reported results show the effectiveness of the proposed
approach for transferring manipulability ellipsoids between
robots that differ in their kinematic structure. Our framework
allows a robot to learn posture-dependent task requirements
without explicitly encoding a model in the joint space of
the demonstrator, which would require complex kinematic
mapping algorithms and would make task analysis less
interpretable at first sight. More importantly, the proposed
framework extends the robot learning capability beyond the
transfer of trajectory, force and impedance.

Manipulability transfer, as proposed in this paper, can
make use of the different manipulability criteria proposed
in the literature, such as velocity/force/dynamic manipula-
bility ellipsoids [24], in order to learn and reproduce task
requirements at different kinematics and dynamics levels.
For example, for a specific task, the shape and orientation
of velocity and force ellipsoids may vary over time, and so
may the optimal directions for controlling velocity and force.
Such variations can be compactly encoded in our approach,
which may be later exploited to define optimal directions for



Fig. 5: Convergence rate for redundancy resolution. The top graph
shows the convergence for the proposed manipulability-based cost
function, while the bottom graph displays the results using the
maximization of the major-axis alignment criterion.

controlling velocity and force in a hybrid-controlled robot to
successfully fulfill the velocity/force task requirements. In
other words, our method may be used to assist in the design
of task control strategies for robots [25].

Note that during reproduction, we did not take advantage
of the variability observed in the demonstrated manipulability
ellipsoids associated with Ŝ

OO

OO (see (17) and (21)). Such
information, in the form of full covariance (4th-order tensor),
could potentially be exploited in future work to characterize
the precision of the manipulability-based redundancy opti-
mization, where low variability would demand high precision
in ellipsoids matching, and vice-versa.

V. CONCLUSIONS AND FUTURE WORK

This paper presented a novel framework for transferring
manipulability ellipsoids to robots. The proposed approach
is first built on a probabilistic learning model that allows for
the geometry of the SPD manifold to encode and retrieve ap-
propriate manipulability ellipsoids. This geometry-aware ap-
proach is later exploited for redundancy resolution, allowing
the robot to modify its posture so that its manipulability el-
lipsoid coincides with that of a demonstration. This approach
enables the learning of posture-dependent task requirements.
It provides a skill transfer strategy going beyond the imitation
of trajectory, force or impedance behaviors. To the best of our
knowledge, this is the first work that proposes manipulability
transfer between agents of different embodiments from a
robot learning from demonstration perspective.

Future work will explore manipulability transfer between
humans and robots. The tasks of interest will be those in
which velocity and force control requirements vary over the
course of the task execution, which will be directly related
to changes in the velocity/force manipulability ellipsoids.
We also envisage to exploit the covariance information
associated with the desired manipulability ellipsoids retrieved
by GMR to regulate how precisely the manipulability should
be matched. This may avoid unnecessary posture changes in
parts of the task in which variable manipulability ellipsoids
were observed in the demonstrations.
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