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Abstract— Physical interaction between humans and robots
arises a large set of challenging problems involving hardware,
safety, control and cognitive aspects, among others. In this con-
text, the cooperative (two or more people/robots) transportation
of bulky loads in manufacturing plants is a practical example
where these challenges are evident. In this paper, we address
the problem of teaching a robot collaborative behaviors from
human demonstrations. Specifically, we present an approach
that combines: probabilistic learning and dynamical systems,
to encode the robot’s motion along the task. Our method allows
us to learn not only a desired path to take the object through,
but also, the force the robot needs to apply to the load duringthe
interaction. Moreover, the robot is able to learn and reproduce
the task with varying initial and final locations of the object.
The proposed approach can be used in scenarios where not
only the path to be followed by the transported object matters,
but also the force applied to it. Tests were successfully carried
out in a scenario where a 7 DOFs backdrivable manipulator
learns to cooperate, with a human, to transport an object while
satisfying the position and force constraints of the task.

I. INTRODUCTION

Robots are often envisaged as human-like machines that
can interact with people in a natural and safe way. Such
human-robot interaction (HRI) implies that the robot is
able to communicate with the person, understand his/her
needs and behave accordingly. This impression is particularly
important in situations where a human needs the help of
another person to perform a given task successfully. For
example, the transportation of bulky objects demands at least
two persons to carry the load cooperatively. This task may
become difficult when the load has to pass through narrow
spaces, and even more laborious if the object is fragile
enough so that the transporters must concern about the force
they apply to it. In this scenario, one of the humans may
be replaced by a robotic agent, where the reasoning and
adaptation abilities of the human can be combined with the
robot’s strength and precision. Such functionality may be
achieved by programming the robot from demonstrations of
the task. Once the collaborative behavior has been learned,
the robot can autonomously perform the task, expanding its
own skills.

Programming by demonstration (PbD) [1] has been suc-
cessfully applied to settings where a robot reproduces a
learned skill in a standalone fashion [2], [3]. However, this
approach has rarely been used in human-robot collaboration
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Fig. 1: Experimental setting: demonstration and reproduction
phases.

(HRC) scenarios, where control-based solutions have domi-
nated (see Section II). Yet, most control methods require a
model of the task, which becomes complex when a human is
in the loop. In such instances, PbD emerges as a promising
alternative solution allowing the natural transfer of human
knowledge about the task to the robot. In this context, a
human teacher may, for instance, demonstrate to the robot
its role in the task [4], a trajectory to follow [5], or even how
compliant it should be [6].

We therefore propose to use PbD to teach a robot to simul-
taneously handle position and force constraints arising when
a human and a robot cooperatively manipulate/transport an
object (see Fig. 1). Specifically, our approach defines a set
of virtual dynamical systems representing the constraintsof
the task, and driving the robot motion. Such systems can act
on different frames of reference, for instance, on coordinate
systems representing the robot’s base, the transported object,
etc. To deal with this problem, we use a task-parametrized
formulation of a Gaussian mixture model that allows us not
only to encode the human demonstrations, but also, to extract
automatically the importance of the constraints acting at dif-
ferent coordinate systems along the task [7]. Moreover, our
approach provides both open-loop and feedback components.
This is specially important in HRC, due to the fact that pure
open-loop systems cannot react to perturbations, and pure
feedback frameworks will impede the speed and fluency of



the collaboration. We successfully test our approach in a real-
world scenario where a 7 DOFs robotic manipulator learns
to perform a cooperative task requiring different force and
position constraints to be satisfied.

A brief review on works dealing with similar HRC prob-
lems is given in Section II. Details about our approach
can be found in Sections III and IV, while results for the
cooperative transportation experiment are shown in Section
V. Conclusions and future work are presented in Section VI.

II. RELATED WORK

A. Control-based approaches

Human-robot collaboration has been investigated from the
early nineties, when purely control-based approaches were
dominant. Kosugeet al. [8] proposed an impedance control
based on the apparent mechanical impedance of an object
manipulated by multiple robots and a human. The force
applied by the human was transferred to the robot controllers,
so that the human could command the motion of the object
while the robots behave as followers. The proposed controller
was compared against different classic control scheme, where
its low damping version performed the best [9].

Al-Jarrah and Zheng introduced a two-levels control
schema, where an admittance controller is driven by a higher
level force control. The idea here was to trigger a reflex
controller when the robot acted as a load for the human by
setting a force-based threshold that governs the motion of
the manipulator [10]. Duchaine and Gosselin [11] considered
that the human intention in cooperative tasks is typically
based on the direction and magnitude of the force measured
at the robot’s end-effector. They proposed to add the rate
of change of the sensed force to an impedance controller
[12], while varying its damping as function of the changes
of magnitude of the force.

Dumoraet al. decomposed a collaborative task into a se-
quence of non-holonomic robot motions [13]. Every motion
primitive was represented by a predefined virtual mechanism
coupled to the robot’s impedance controller. Hence, the
whole task could be carried out by sequencing the different
primitives according to the user’s intention [14]. Note that
the key feature in all these works has been the need for a
model of the task linked to an analysis of the possible robot
movements, so that both the parameters and the structure
of the controller can be designed accordingly. Unfortunately,
most of these frameworks are not flexible, in the sense that
if a new task is required or if an additional constraint needs
to be considered, the controllers need to be redesigned.

B. Human performance-based approaches

Several works rely on human-human collaboration studies
to assist in design of the robot controllers. Ikeuraet al.
proposed to approximate human cooperation using variable
impedance control (with zero stiffness). From data collected
when two people carried an object, the damping parameter
was estimated according to the precision required by the
task, either from least squares [12], or by minimizing a
cost function that penalized high rates of change [15]. The

approach was then improved by introducing stiffness into the
controller [16]. Here, the parameters were estimated from
force and position data collected when a single human com-
pleted the task following minimum jerk robot movements
(i.e., the robot acted as the leader while the human was the
follower). Note that the minimum jerk model [17] has also
been an inspiration for Maedaet al. [18]. They proposed to
use such a model to estimate the human hand position in a
human-robot carrying task. This estimation was used as the
reference for the robot impedance controller.

Tsumugiwa et al. [19] used an impedance controller,
where the damping varied according to the estimate of the
human arm stiffness. Their approach assumed that a low
velocity cooperative system remains stable if the robot’s
damping proportionally varies as the human stiffness. Parker
et al. [20], unlike former works, proposed to iteratively tune
the parameters of the robot’s admittance controller from the
user’s preferences with regards to the robotic partner.

Notice that the idea behind all these approaches is mainly
to emulatethe way humans act in a collaborative scenario.
This aim has been achieved either by shaping the parameters
of a predefined controller using motion/force patterns sensed
while a human-human pair carries out the task, or by tuning
the controller based on users’ feedback. The success of these
methods mainly relies on how well the robot controller fits
the human collaborative behavior.

C. Learning-based approaches

Evrardet al. [4] proposed a probabilistic framework based
on Gaussian mixture models (GMM) and Gaussian mixture
regression (GMR) to respectively encode and reproduce
robot collaborative behaviors. The main idea was to demon-
strate, by teleoperation, the leader/follower roles during a
cooperative lifting task. GMM encapsulated the robot motion
and the sensed forces, whilst GMR generated the reference
inputs corresponding to a given sensed force during repro-
duction. On the other hand, Medinaet al. [5] endowed their
robot with a cognitive system, which provided segmentation,
encoding and clustering capabilities for demonstrations of
collaborative behavioral primitives. These were represented
by a primitive graph and a primitive tree using hidden
Markov models (HMM) that were incrementally updated
during reproduction [21]. One of the main differences with
respect to [4] was that here the robot started behaving as a
follower, but its role became more proactive as it acquired
more knowledge about the task.

Gribovskayaet al. [22] proposed a hybrid structure based
on PbD and adaptive control that drives the robot using an
adaptive impedance controller. First, a model of the task was
learned from demonstrations encoded by a GMM to generate
feedforward control signals. Then, the impedance parameters
were adapted as function of the kinematic and force errors
generated during the execution of the task.

In contrast to the work presented above, where the tra-
jectory to be followed mattered, we proposed in [6] to teach
different compliance levels to a robot by kinesthetic teaching.



Fig. 2: Illustrative example of the robot motion driven by
a virtual spring-damper attractor and constrained to external
interaction forces. The gray line represents the demonstrated
path of the end-effector. The red line depicts the trajectory
of the attractory.

The core idea was to virtually connect the robot’s end-
effector to a set of virtual springs driving the robot behavior.
A task-parametrized GMM [7] encoding the demonstrations
defined the equilibrium points of this system. The model
was then augmented by including stiffness matrices estimated
from the training data. Yet, no restrictions regarding the
forces applied to the load were given, neither was a specific
path to follow. These specifications become particularly rele-
vant in cooperative transportation. Consequently, we address
here the problem of learning force and position constraintsin
human-robot cooperative transportation, where the start and
target locations of the load vary.

III. PROBLEM FORMULATION

The problem tackled in this paper is that of a human
and a robot cooperatively transporting an object from a start
location to a target position. Moreover, we consider the case
in which the given object should be manipulated with some
desired forces, i.e., the forces applied to the load should
allow the object to be transported by pressing it on the
sides without breaking it. In this context, the robot needs not
only to follow a specific trajectory in its workspace, but also
to physically interact with the user through the transported
load, under some force and position constraints. To formalize
the problem, let us consider the operational space dynamics
model of the robot under interaction with the environment
as

Λ(x)ẍ+ µ(x, ẋ) + p(x) = F − F e, (1)

whereΛ(x), µ(x, ẋ) and p(x) are the inertia matrix, the
vector of centrifugal and Coriolis forces, and the gravity
components, respectively. The pose of the robot is denoted
by x (i.e., position and orientation of the end-effector),F is
the generalized forces vector, andF e is the vector of contact
forces exerted by the end-effector on the environment. We
assume a perfect nonlinear dynamic coupling, which means
the robot’s end-effector can be treated as equivalent to a
single unit mass moving in the Cartesian space [23].

This allows us to formulate our problem as the case of
finding the generalized force vectorF to attain the desired

Fig. 3: Three different demonstrations of the collaborative
transportation task. The solid and dashed lines respectively
depict the end-effector and attractor trajectories. The start
and the end of robot motion are represented by colored dots
and crosses. The dark and light boxes show the starting and
target locations of the transported object.

task dynamics. To achieve this aim, we propose that the robot
behavior during the interaction is driven by a virtual attractor
represented as a spring-damper system, as shown in Fig. 2.
Specifically, the desired robot’s motion during interaction is
given by

ẍ = KP (y − x)−KV ẋ− F e, (2)

whereKP , KV andy are the stiffness matrix, the damping
and the path of the virtual attractor, respectively. The learning
problem is, therefore, formulated as estimating the path of
y that will induce the end-effector to follow the cooperative
behaviors demonstrated by the teacher.

Notice thatx, and its first and second time derivatives
are directly obtained from demonstrations. Also, the contact
forcesF e are provided by a force sensor mounted at the
robot’s end-effector. It is worth highlighting that the sensor
readings depend on the forces applied by the human and
the robot while moving the load, in other words, the sensed
forces contain information about the desired force to be
applied to the object.

IV. LEARNING AND REPRODUCTION

We propose to probabilistically encode the set of demon-
strations through a task-parametrized version of the Gaussian
mixture model [7]. Such a model allows us to consider the
task constraints given at different frames of reference (i.e.,
the parameters of the task). Formally, the task parameters are
represented asP coordinate systems, defined at time stepn

by {bn,j ,An,j}Pj=1, representing respectively the origin of
the frame and a set of basis vectors{e1, e2, . . .} forming a
transformation matrixA=[e1e2 · · · ].

A movement is observed from these different viewpoints,
forming a third order tensor datasetX ∈ R

D×N×P , com-
posed ofP trajectory samplesX(j) ∈ R

D×N . Every X(j)

corresponds to a matrix composed ofD-dimensional ob-
servations atN time steps. In our application1, D = 4,

1For sake of simplicity, the end-effector orientation was not considered
in the experiments.
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Fig. 4: Probabilistic encoding of the demonstrations at thedifferent candidates frames of the task. The first row shows the
model in thestart frameS, while the second row displays the GMM in thetarget frameT . The gray lines depict the attractor
trajectories observed from the corresponding candidate frame. The ellipsoids represent the components of the model.

corresponding to the aggregation of the time variablet

and the Cartesian position of the attractory, therefore
X(j) =

[

t1 ... tN

y
(j)
1 ... y

(j)
N

]

. The parameters of the model withK

components are defined by{πi, {µ
(j)
i ,Σ

(j)
i }Pj=1}

K
i=1, where

πi are the mixing coefficients,µ(j)
i andΣ(j)

i are the mode-j
center and covariance matrix of thei-th Gaussian component.

Learning of the parameters is achieved by setting the
constrained problem of maximizing the log-likelihood under
the constraints that the data in the different frames are
generated from the same source, resulting in an EM process
to iteratively update the model parameters until convergence.

E-step:

γn,i =

πi

P
∏

j=1

N
(

X(j)
n | µ

(j)
i ,Σ

(j)
i

)

∑K

k=1 πk

P
∏

j=1

N
(

X(j)
n | µ

(j)
k ,Σ

(j)
k

)

.

M-step:

πi =

∑N

n=1 γn,i

N
, µ

(j)
i =

∑N

n=1 γn,i X
(j)
n

∑N

n=1 γn,i
,

Σ
(j)
i =

∑N

n=1 γn,i (X
(j)
n − µ

(j)
i )(X(j)

n − µ
(j)
i )⊤

∑N

n=1 γn,i
. (3)

The learned model can be used to reproduce movements
in new situations (for new positions and orientations of
candidate frames). The model first retrieves at each time step
n a GMM, by computing a product of linearly transformed
Gaussians

N (µn,i,Σn,i) ∝
P
∏

j=1

N
(

An,jµ
(j)
i +bn,j , An,jΣ

(j)
i A⊤

n,j

)

,

⇔ Σn,i =
(

P
∑

j=1

(An,jΣ
(j)
i A⊤

n,j)
−1)−1

, (4)

µn,i = Σn,i

P
∑

j=1

(An,jΣ
(j)
i A⊤

n,j)
−1(An,jµ

(j)
i +bn,j).

The model parameters are initialized with ak-means
procedure redefined using a similar process to that used for
the modified EM algorithm.

By using the temporary GMM parameters computed in Eq.
(4) for a given set of task parameters, we resort to Gaussian
mixture regression to retrieve, at each time step, the attractor
position during reproduction. Specifically, GMR relies on the
joint distribution P(t,y) learned by the task-parametrized
GMM. The conditional probabilityP(yn|tn) is estimated as
an output distributionN (µ̂y

n, Σ̂
y

n) that is also Gaussian, with

µ̂y

n =
∑

i

hn,i(tn)
[

µ
y

n,i +Σ
yt
n,i(Σ

t
n,i)

−1(tn − µt
n,i)

]

,

Σ̂
y

n =
∑

i

h2
n,i(tn)

[

Σ
y

n,i −Σ
yt
n,i(Σ

t
n,i)

−1
Σ

ty
n,i

]

, (5)

and activation weightshn,i(tn) defined as

hn,i(tn) =
πiN (tn| µt

i,Σ
t
i)

∑K

k πkN (tn| µt
k,Σ

t
k)
.

V. TRANSPORTATION EXPERIMENT

We test the performance of our approach in an experiment
where a human-robot dyad transports an object from a start
location to a desired target. The detailed description about
the setting, the demonstration and reproduction phases as
well as the obtained results are given below.



A. Description of the task

At the beginning of the transportation task, two partici-
pants simultaneously reach for the object. Once they make
contact with the load, they start jointly transporting the
object along a given path to reach the target location. When
the object gets to the final position, the human-human pair
releases it and moves away from the object. Note that both
the starting and goal object position/orientation may vary
across repetitions. As stated in Section I, the aim is to
introduce a robot into such a task by replacing one of the
human participants by a robot.

Specifically, we used a torque-controlled 7 DOFs WAM
robot fitted with a 6-axis force/torque sensor. In the demon-
stration phase, the gravity-compensated robot is kinestheti-
cally guided by the teacher while cooperatively achieving the
task with the other human partner, as shown in Figure 1. Five
examples of collaborative behavior are given to the robot.
The teacher shows the robot both the path to be followed
and the force pattern it should use while transporting the load
(see Figure 3). The demonstrations are then used for training
a five-states task-parametrized GMM (K = 5, selected
empirically) with two candidate coordinate systems (P = 2),
namely, the frames representing the start and target locations
of the object. They are respectively defined as2

An,1 =

[

1 0
⊤

0 RS

]

, bn,1 =

[

0
xS
o

]

,

and

An,2 =

[

1 0
⊤

0 RT

]

, bn,2 =

[

0
xT
o

]

.

Here,RS andRT respectively represent the start and final
orientation of the object with rotation matrices, whilexS

o and
xT
o define its corresponding Cartesian positions.3 Finally,

the attractor’s trajectory is computed using Eq. (2) with
predefined values for the matricesKP = 500 · I and
KV = 60 · I.

During reproduction of the task, the start and target frames
are given to the model in order to obtain the temporary GMM
parameters using Eq. (4). Then, the robot and its human
partner transport the object towards the target location. Here,
for each time steptn, the robot obtains a new attractor
location from Eq. (5) (as explained in Section III), that
generates a new desired acceleration in the operational space
of the robot. For sake of simplicity in the experiments, the
orientation of the robot’s end-effector is fixed.

B. Results

Fig. 4 shows the resulting encoding of the attractor tra-
jectories computed from Eq. (2) and observed from the two
different candidate frames. Notice how the multiple demon-
strations are locally consistent when the robot approaches

2Note that the duration of the task is not modulated by the task
parameters.

3The position and orientations of the object were predefined in the
experiment, but these can alternatively be obtained using avision or optical
tracking system. Information regarding the motion of the human partner was
not considered here.
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(a) Reproductions with varying start and target locations of the
object.
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(b) Nearly constant force applied by the human partner to theobject
along the whole reproduction.
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(c) Human varies the applied force along the whole reproduction.
The robot adapts accordingly.

Fig. 5: The solid lines represent the robot’s trajectory while
the dashed lines depict the trajectory of the attractory

obtained from GMR. The green area display the sensed force
at the robot’s end-effector. The dots and crosses respectively
display the start and end of the reproduction.

the start location of the object (i.e., frameS), and when the
manipulator moves away once the load has been placed at its
target position (i.e., frameT ). This is reflected by the small
ellipsoids in these parts of the task.

After learning, the obtained model was used to test the
reproduction of the task on the real platform. Three different
types of tests were carried out to evaluate the performance
of the robot. First, the human and robot cooperatively trans-
ported the load as demonstrated, i.e., the force applied to the
load was similar to those given previously. Fig. 5a shows
three successful reproductions under the aforementioned
condition where both the starting and target location varied.
Fig. 5b shows one of these reproductions where it is clearly
observed that the sensed force profile remains nearly constant
throughout the whole reproduction. It is worth highlighting
that the observed offset between the end-effector position
and the attractor path allows the robot to apply the desired
force to the load while transporting it.

The second test consisted of applying a varying force to
evaluate how the robot reacted to force perturbations not
observed during learning. The human operator started the
task pushing the object with a force higher than those taught
during the demonstrations. Then, the applied force was
significantly reduced, and finally it reached values similarto
the demonstrations, as shown in Fig. 5c. It is observed that
the robot could successfully adapt to these force variations.



When the force is high, the robot behaves compliantly,
allowing small deviations from the path, still ensuring that
the position constraint remains within a feasible range deter-
mined by the observed variability in the demonstrations and
the controller gains. In contrast, when the force is very low
(i.e., the human may be losing the contact with the load),
the robot moves to apply more force and prevent the object
from being dropped. Note that despite the force variations,
the robot was able to transport the object along a similar
path in the other dimensions, by showing a collaborative
behavior that is an appropriate compromise between force
and position constraints, automatically extracted from the
statistical representation of the demonstrations.

The last test concerned the situation in which the human
completely releases the object. In this case, the robot’s end-
effector moved forward, but only within a boundary defined
by the variations of the demonstrated possible paths. In other
words, the robot does not push indefinitely, but it instead
moves in an appropriate manner according to the unexpected
circumstances and its prior knowledge of the task learned
from the demonstrations. A video of the experiment and
the task-parameterized GMM sourcecode are available at
http://programming-by-demonstration.org/Roman2014/ .

VI. CONCLUSIONS AND FUTURE WORK

We presented a PbD approach for teaching a robot to
cooperatively transport objects. Our method exploits the
advantages of a dynamical system formulation for modelling
both the motion and the interaction of the robot with the
user and the environment along the task. The dynamics of
the system is learned from a set of demonstrations that is
encapsulated in a task-parametrized GMM. Note that, in
contrast to previous works, the robot extracts the desired
path to follow and the needed force to be applied to the load
from the examples provided by a human user. Therefore,
the approach does not depend on a specific model of the
task, but it automatically extracts the different constraints of
the problem. The results showed that the robot successfully
carried out the task, and that it was able to adapt to force
perturbations not observed during the learning phase.

In future work, similarly as in [24], we plan to extend this
research towards the estimation of the stiffness and damping
matrices of the virtual attractor. In contrast to [6], whereonly
the stiffness gains were estimated through a two-step process,
we want to learn the task and estimate stiffness and damping
in a one-shot fashion. This would allow the robot to shape
its compliance level along the task according to the provided
demonstrations. We also plan to explore the variability of
the demonstrations encapsulated in the covariance matrices
of the model, which could be exploited to detect if the
robot reaches an unexpected situation that is too far from
the demonstrations (e.g., in case of failures), requiring the
user to provide new demonstrations.
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