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Abstract— As humanoid robots become commonplace, learn-
ing and control algorithms must take into account the new
challenges imposed by this morphology, in order to fully exploit
their potential. One of the most prominent characteristics of
such robots is their bimanual structure. Most research on learn-
ing bimanual skills has focused on the coordination between
end-effectors, exploiting operational space formulations. How-
ever, motion patterns in bimanual scenarios are not exclusive
to operational space, also occurring at joint level. Moreover,
in addition to position, the end-effector orientation is also
essential for bimanual operation. Here, we propose a framework
for simultaneously learning constraints in configuration and
operational spaces, while considering end-effector orientations,
commonly overlooked in previous works. In particular, we
extend the Task-Parameterized Gaussian Mixture Model (TP-
GMM) with novel Jacobian-based operators that address the
foregoing problem. The proposed framework is evaluated in a
bimanual task with the COMAN humanoid that requires the
consideration of operational and configuration space motions.

I. INTRODUCTION

The human-robot transfer of bimanual skills is a growing
topic of research in robot learning. As the number of
available dual-arm platforms and humanoid robots increases,
existing learning and control techniques must be adapted to
take full advantage of the repertoire of tasks that such robots
can perform [1]. Among the available learning frameworks,
Programming by Demonstration (PbD) [2] is a promising
direction, but historically it has mostly addressed single-arm
skills. Recent works attempt to bridge the gap and focus on
PbD for bimanual manipulation, exploiting operational space
formulations (e.g. [3], [4], [5], [6], [7], [8]), with a strong
focus on extracting arm coordination and/or dominance.
However, when skills contain constraints in configuration
space, such as preferred postures or arm movements for
which joint trajectories are more important, operational space
formulations alone are insufficient for correct task execution.
Classical control approaches (see e.g. [9]) exploit the null
space of tasks in Cartesian space to perform secondary mo-
tions in joint space. Such approaches enforce strict priority
hierarchies, which do not allow the joint space to have the
highest priority, and will only perform adequately while the
system is redundant with respect to the main task. Figure
1 shows an example where the two types of constraints
are present. The depicted skill consists of a phase where
the operational space dominates over configuration space
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Fig. 1: The COMAN robot performs a bimanual shaking task. Top:
snapshots of the reaching part of the movement, governed by constraints
in operational space. The robot gradually reaches for the object, which is
tracked by an optical system. Bottom: shaking part, defined by constraints
in configuration space. The robot performs the shaking through rhythmic
motions of the shoulders, moving the shaker up and down.

(approaching and grasping the bottle) and another phase
where the configuration space takes over (shaking through
rhythmic movements of the shoulder joints). Our approach
is aimed at allowing the robot to learn the importance of the
two types of constraints from the demonstrations, regardless
of redundancy or previously set hierarchies.

Endowing robots with the ability to learn how to handle
possibly competing constraints in operational and configura-
tion spaces is thus an important challenge in the learning of
robot controllers. Earlier work from Calinon [10] addresses
this problem in single-arm tasks. One limitation of [10] is
that the approach only accounts for position constraints in
operational space. Hence, by design, it prevents orientation
motions with respect to objects (or between hands) from be-
ing learned by the robot. The role of orientation in bimanual
manipulation has been actively studied in recent years [7],
[8]. Indeed, it is widely accepted that being able to transfer
orientation abilities to robots performing bimanual skills is
crucial for proper execution of most daily life tasks.

This paper extends [10] to consider orientation when learn-
ing configuration and operational space constraints. We draw
insights from [8] and take advantage of quaternion algebra to
project operational space motions onto configuration space,
allowing for the extraction of consistent orientation patterns
from demonstrations. On the basis of [8], the problem is
framed as a Task-Parameterized Gaussian Mixture Model
(TP-GMM) [11], reviewed in Section II, whose structure is
exploited to consider Jacobian matrices and quaternion-based



operators, resulting in a principled and self-contained solu-
tion to the foregoing problem (Section III). We validate the
proposed approach on the COMpliant huMANoid (COMAN)
[12]. For this, we choose the skill of bimanually shaking
a bottle (Figure 1). The experimental results are reported
in Section IV, which is followed by concluding remarks in
Section V.

II. TASK-PARAMETERIZED GAUSSIAN MIXTURE
MODELS (TP-GMM)

In previous work [11] we introduced a probabilis-
tic approach to task-parameterized movements, the Task-
Parameterized Gaussian Mixture Model (TP-GMM). TP-
GMM was used to encode demonstrated end-effector mo-
tions in multiple coordinate systems simultaneously, whose
importance changed during the task depending on the vari-
ability observed in the demonstrations. This information was
exploited to adapt demonstrated skills to new situations. In
this section we review TP-GMM.

A. Task parameters

Definition 1: Task parameters are sets of linear operators
A(j), b(j) that map Gaussian distributions from P subspaces,
indexed by j = 1, . . . , P , onto a common space. Such sets
are called ‘task parameters’ since they are part of the
parameterization of a task, i.e. they influence how the robot
accomplishes the given task goals.

In TP-GMM, P subspaces encode local features of a
demonstrated skill. Section II-B describes how local models
of features are trained. Once projected onto a common space
through the task parameters, the local models are combined
to yield a solution that fulfills the most important features at
every moment of task execution (Section II-C).

In previous work, task parameters have been used to
represent poses of objects in a robot workspace, mapping
local models of demonstrations (from the perspective of
P different objects) onto a global frame—the robot base
frame. In these cases, A(j) is a rotation matrix [3], [11]
or a quaternion matrix [8], and b(j) is a translation vector,
representing respectively the object orientation and origin of
its coordinate system with respect to the robot base frame.
Note that, in previous work, authors referred to task param-
eters as candidate frames or candidate coordinate systems.
This is because, for a given task, each set of task parameters
A(j), b(j) may or may not influence the task execution,
depending on the variability of the teacher’s demonstrations
in the corresponding coordinate system. Hence, each set
A(j), b(j) is considered to be a candidate for affecting the
task outcome.

In this work, we exploit the linear structure inherent
to TP-GMM, through the task parameters, to address the
problem of combining constraints between configuration and
operational spaces, with orientation. We do this by taking a
different perspective from past work—where task parameters
represented coordinate systems—and devising formulations
of task parameters that correspond to candidate projection
operators (Section III).

B. Model estimation

Formally, each demonstration m ∈ {1, . . . ,M} contains
Tm datapoints of dimension D forming a dataset of N
datapoints {ξt}Nt=1 with N =

∑M
m=1Tm and ξt ∈ RD. P

task parameters, that map between subspaces j = 1, . . . , P
and a common space, are defined at every time step t

by {A(j)
t , b

(j)
t }Pj=1. The demonstrations ξ ∈ RD×N are

observed from each subspace, forming P local datasets
X(j)∈RD×N . As an example, in previous work [3], [11],
ξt corresponded to end-effectors positions, and the task
parameters represented coordinate systems, thus the local
datasets were computed from X

(j)
t = A

(j)−1

t

(
ξt − b

(j)
t

)
since {A(j)

t , b
(j)
t }Pj=1 parameterized the orientations and

positions of P objects.
The model parameters of a TP-GMM with K components

are defined by
{
πi, {µ(j)

i ,Σ
(j)
i }Pj=1

}K
i=1

, where πi are the
mixing coefficients and µ(j)

i , Σ
(j)
i denote the center and

covariance matrix of the i-th Gaussian from subspace j.
Learning of the model parameters is achieved by expectation-
maximization (EM), see [11] for details.

C. Gaussian Mixture Regression

The learned model is used to reproduce movements in
new situations. Each subspace encodes local features of the
demonstrated movement. In new situations, i.e. new values of
the task parameters A(j)

t , b
(j)
t , one needs to find a trade-off

between each local solution. TP-GMM solves this problem
by combining the local models, projected in the common
space, using the product of Gaussians. In this way, a new
GMM with parameters {πi, µ̂t,i, Σ̂t,i}Ki=1 is automatically
generated as

N
(
µ̂t,i, Σ̂t,i

)
∝

P∏
j=1

N
(
µ̂

(j)
t,i , Σ̂

(j)
t,i

)
, with

µ̂
(j)
t,i =A

(j)
t µ

(j)
i +b

(j)
t , Σ̂

(j)
t,i =A

(j)
t Σ

(j)
i A

(j)T

t , (1)

where the result of the Gaussian product is given by

Σ̂t,i =
( P∑
j=1

Σ̂
(j)
t,i

−1)−1

, µ̂t,i = Σ̂t,i

P∑
j=1

Σ̂
(j)
t,i

−1
µ̂

(j)
t,i .

(2)
Equation (1) maps local models onto a common space

space, where information from the different subspaces is
fused by computing a product of Gaussians. Note that task
parameters A(j)

t , b
(j)
t may vary during reproduction and take

values different from those observed during demonstrations.
In previous work [8], [3], this property was exploited to
adapt demonstrated skills to new situations (e.g., unobserved
positions and orientations of manipulated objects). The ob-
tained GMM is used to retrieve a reference for the robot
through Gaussian Mixture Regression (GMR) at any given
time step t. In this case, the datapoint ξt is decomposed
into two subvectors ξIt and ξOt , respectively, spanning the
input and output dimensions of the regression problem, thus
the new GMM encodes the joint probability distribution



P(ξIt , ξ
O
t ) ∼

∑K
i=1 πi N

(
µ̂t,i, Σ̂t,i

)
. GMR thus generates a

new distribution P(ξOt |ξ
I
t ) = N

(
ξOt |µ̂

O
t , Σ̂

O

t

)
that is used

to control the robot. A more comprehensive description of
GMR in the context of TP-GMM, can be found in [11].

In the next section we show how Jacobian matrices, com-
monly employed in robotics as linear mapping operators in
differential kinematics, can be exploited as task parameters.

III. LEARNING OPERATIONAL AND
CONFIGURATION SPACE CONSTRAINTS

Previous works that exploited TP-GMM [8], [3], [11]
considered manipulation problems defined in operational
space. In such cases, task parameters were related to object
poses, i.e., b(j)

t and A(j)
t parameterized positions and ori-

entations of coordinate systems. In this section, we propose
to exploit the structure of TP-GMM described in Section
II to simultaneously consider constraints in operational and
configuration spaces. We do this by introducing Jacobian-
based task parameters (formulated in Sections III-A and
III-B for position and orientation, respectively) that project
operational space constraints on configuration space (Section
III-C), where Gaussian products (1), (2) are computed.

A. Jacobian-based task parameters for position constraints

Handling constraints in configuration and operational
spaces is achieved by exploiting the linear structure of
the task parameters of TP-GMM, in combination with in-
verse kinematics. Formally, consider a manipulator with
Nq joints, whose positions and velocities are denoted by
q, q̇ ∈ RNq . Its differential kinematics are given by[
ẋT ωT

]T
= Jq̇, where ẋ,ω ∈ R3 are the operational

space linear and angular velocities, respectively. The Ja-

cobian matrix J =
[
JT
p J

T
o

]T
∈ R6×Nq accounts for the

contribution of joint velocities to operational space veloc-
ities, with matrices Jp,Jo ∈ R3×Nq responsible for the
linear and angular parts, respectively. The inverse differential

kinematics equation q̇ = J†ẋ, with J† = JT
(
JJT

)−1

the
right pseudo-inverse of the manipulator Jacobian J , yields
the minimum-norm q̇ that ensures ẋ in operational space
[13].

The inverse differential kinematics for the position part is
given by q̇ = J†p ẋ. Numerical integration of this equation
permits the computation of joint references for a desired end-
effector position xt as (dropping the Jacobian subscript p)

q̂t − qt−1 = J†t−1 (xt − xt−1)

⇐⇒ q̂t = J†t−1xt + qt−1 − J
†
t−1xt−1, (3)

where q̂t denotes the desired joint angles at t. The structure
of (3), being affine in xt, allows us to connect inverse
kinematics with TP-GMM. Let us assume, for the sake of
the argument, that end-effector positions are modeled as
trajectory distributions xt ∼

∑K
i=1 πiN

(
µ

(j)
i ,Σ

(j)
i

)
. The

index j denotes one arbitrary subspace, as discussed in
Section II, where robot end-effector positions are locally
modeled by a GMM. It follows that the linear transformation

properties of Gaussian distributions (1) can be applied to (3)
to project the local GMM on configuration space, resulting
in

q̂
(j)
t,i = J†t−1︸ ︷︷ ︸

A
(j)
t

µ
(j)
i + qt−1 − J

†
t−1xt−1︸ ︷︷ ︸

b
(j)
t

, ∀i = 1, . . . ,K,

(4)
for the mean of state i, and

Σ̂
(j)

t,i = J†t−1︸ ︷︷ ︸
A

(j)
t

Σ
(j)
i (J†t−1)T︸ ︷︷ ︸

A
(j)T

t

, (5)

for the corresponding covariance matrix. Equations (4) and
(5) show that Jacobian-based task parameters A

(j)
t , b

(j)
t

map Gaussian distributions from operational to configuration
space, creating new distributions of joint angles. The linear
structure of TP-GMM is, hence, not exclusive to the use of
coordinate system representations of task parameters.

This result is the cornerstone of more complex types
of operational space projection operators. For instance, if
we consider end-effector positions encoded with respect to
an object parameterized by a translation vector p(j)

t and a
rotation matrix R(j)

t , (4) becomes

q̂
(j)
t,i = J†t−1R

(j)
t︸ ︷︷ ︸

A
(j)
t

µ
(j)
i + J†t−1

(
p

(j)
t − xt−1

)
+ qt−1︸ ︷︷ ︸

b
(j)
t

, (6)

which can be derived in a straightforward manner from (4)
by assuming rotated and translated Gaussians with mean
R

(j)
t µ

(j)
i + p

(j)
t and covariance R(j)

t Σ
(j)
i R

(j)T

t . Similarly,
the expression for the covariance matrix Σ̂

(j)

t,i can be easily
obtained based on (5), employing A(j)

t as defined in (6).
On the basis of this construction of task parameters, the

local datasets X(j) = [X
(j)
1 , . . . ,X

(j)
N ] used to train the

TP-GMM model can be computed in a similar fashion to
Section II, for standard coordinate systems. If a subspace
j models the absolute end-effector position, i.e. with re-
spect to the robot base frame, we have X(j)

t = xt. On
the other hand, when j is associated with a coordinate
system with pose parameters p(j)

t ,R
(j)
t as in (6), we have

X
(j)
t = R

(j)T

t

(
xt − p(j)

t

)
.

In summary, in this novel formulation of task parameters,
A

(j)
t ∈ RNq×3 and b

(j)
t ∈ RNq map from Cartesian

position to joint angles, solving the inverse kinematics with a
reference given by the mean µ(j)

i . The TP-GMM representa-
tion is therefore extended to Jacobian-based task parameters
{b(j)
t ,A

(j)
t }Pj=1 with non-square A(j)

t matrices. With this
representation, operational space constraints are projected on
configuration space, where Gaussian products can be com-
puted as in (2), extending the original TP-GMM formulation
to the consideration of configuration space constraints.

B. Orientation projection operators

The previous subsection showed how we can formulate
task parameters to project end-effector position constraints



TABLE I: Summary of task parameters as candidate projection operators

Configuration space constraints: q̂
(j)
t,i = I µ

(j)
i + 0

Absolute position constraints: q̂
(j)
t,i = J†p,t−1 µ

(j)
i − J†p,t−1xt−1 + qt−1

Relative position constraints: q̂
(j)
t,i = J†p,t−1R

(j)
t µ

(j)
i + J†p,t−1(p

(j)
t − xt−1) + qt−1

Absolute orientation constraints: q̂
(j)
t,i = J†o,t−1H̄

∗
(ε̄t−1) µ

(j)
i + qt−1

Relative orientation constraints: q̂
(j)
t,i = J†o,t−1H̄

∗
(ε̄t−1)

+
H(ε

(j)
t )︸ ︷︷ ︸

A
(j)
t

µ
(j)
i + qt−1︸ ︷︷ ︸

b
(j)
t

on configuration space. Here, we take advantage of the alge-
braic properties of unit quaternions to derive linear operators
for projecting orientation constraints. Let us consider the
orientation part of the end-effector pose represented by a
unit quaternion ε (the Appendix reviews this representation)
and the inverse differential kinematics for angular velocities,
q̇ = J†oω. From [14] we have that

ωt ≈
vec(εt ∗ ε̄t−1)

∆t
(7)

gives the angular velocity that rotates the unit quaternion
εt−1 into εt, during ∆t. Note that the non-linearity of the
operator vec(εt ∗ ε̄t−1) is incompatible with the structure
of TP-GMM parameterization. We can however employ
unit quaternion properties (see Appendix) to simplify this
operator. For any unit quaternion, vec(ε) can be replaced by
the matrix operation vec(ε) =

[
03×1 I3×3

]
ε, allowing us

to rewrite (7) as

ωt =
[
03×1 I3×3

]
(εt ∗ ε̄t−1)

1

∆t
. (8)

The quaternion product εt∗ ε̄t−1 can also be replaced by a
matrix product using quaternion matrices. For this, we take
advantage of the operator H̄ (20) that allows for changing
the order in which two quaternions are multiplied without
changing the resulting orientation. Hence, we have

εt ∗ ε̄t−1 = H̄(ε̄t−1) εt. (9)

Replacing in (8) yields

ωt =
[
03×1 I3×3

]
H̄(ε̄t−1) εt

1

∆t
(10)

= H̄
∗
(ε̄t−1) εt

1

∆t
, (11)

where H̄∗
(ε̄t−1) =

[
03×1 I3×3

]
H̄(ε̄t−1), allowing us to

write the inverse kinematics equation as (dropping the sub-
script o in the Jacobian matrix)

ˆ̇qt = J†t−1H̄
∗
(ε̄t−1) εt

1

∆t
, (12)

⇐⇒ q̂t = J†t−1H̄
∗
(ε̄t−1) εt + qt−1, (13)

which has a similar structure‡ to (3), being linear on the
quaternion εt. In a similar way to Section III-A, if µ(j)

i is
the mean of a Gaussian i, encoding the absolute orientation

‡Note that the logarithmic map of the unit quaternion (see [14]), could
alternatively be used instead of (7). However, the linear structure of Eq.
(11) makes (7) a convenient form for the TP-GMM parameterization.

of the end-effector in a subspace j, we take advantage of the
structure in (13) to devise new task parametersA(j)

t , b(j)
t that

map a GMM from quaternion space to configuration space,
namely

q̂
(j)
t,i = J†t−1H̄

∗
(ε̄t−1)︸ ︷︷ ︸

A
(j)
t

µ
(j)
i + qt−1︸︷︷︸

b
(j)
t

, (14)

for the mean of state i (the covariance can be derived by
following the same rules explained in Section III-A).

For a desired end-effector orientation encoded in a coordi-
nate system whose orientation is given by ε(j)

t , (14) becomes

q̂
(j)
t,i = J†t−1H̄

∗
(ε̄t−1)

+

H
(
ε

(j)
t

)
︸ ︷︷ ︸

A
(j)
t

µ
(j)
i + qt−1︸︷︷︸

b
(j)
t

, (15)

where
+

H is a quaternion matrix (see Appendix A).
For this formulation, if a subspace j models the absolute

end-effector orientation, i.e. with respect to the base frame
of the robot, we have X

(j)
t = εt. When j is associ-

ated with a coordinate system with quaternion ε(j)
t , then

X
(j)
t =

+

H
(
ε̄

(j)
t

)
εt.

C. Task parameters for configuration space constraints

The previous two subsections provided task parameters
that project operational space constraints on configuration
space. However, in order to consider both operational and
configuration space constraints, one requires a local model
of the configuration space demonstrations as well. Encoding
configuration space movements in a TP-GMM is done using
simple task parameters A(j)

t = I , b(j)
t = 0, corresponding

to a canonical projection operator. This stems from the fact
that, in this case, the subspace is the configuration space
itself, i.e. , q̂(j)

t,i = µ
(j)
i . The local datasets are thus computed

from X
(j)
t = qt, where qt ∈ RNq is the vector of robot joint

angles at time step t.
Table I gives a summary of the operators derived in this

section. The overall procedure for learning and reproducing
a skill is summarized in Algorithm 1.

IV. EXPERIMENTAL RESULTS

In order to test the operators introduced in Section III,
we selected the bimanual skill of shaking a bottle using
COMAN. The whole skill contains an operational space
component (reaching, grasping a bottle and bringing it closer



Algorithm 1 Simultaneously learning constraints in opera-
tional and configuration spaces

Initialization
1: Select candidate projection operators from Table I based

on the task at hand
• Canonical operator A(j)

t =I , b(j)
t =0, for encoding

configuration space constraints
• Operational space operators, for absolute or relative

position/orientation constraints in operational space
2: Collect demonstrations and compute the local datasets
X(j) according to the chosen operators
Model training

1: Apply EM [11] to obtain
{
πi, {µ(j)

i ,Σ
(j)
i }Pj=1

}K
i=1

Movement synthesis
1: for t = 1, . . . , N do
2: for j = 1, . . . , P do
3: Update {A(j)

t , b
(j)
t } according to Table I

4: end for
5: for i = 1, . . . ,K do
6: Compute µ̂t,i and Σ̂t,i from (1) and (2)
7: end for
8: Apply GMR at ξIt : P(ξOt |ξ

I
t ) = N

(
ξOt |µ̂

O
t , Σ̂

O

t

)
9: Use µ̂Ot as joint references for the robot controller

10: end for

to the torso) and a configuration space component (shaking
with rhythmic shoulder movements). The presented results
were obtained in the Gazebo simulator, however, the skill
was also reproduced in the real robot (Figure 1). The used
demonstrations were generated in Gazebo (Figure 2) solving
inverse kinematics, for the operational space part of the
movement, and using sinusoidal references to control the
shoulder joints, for the shaking part∗. Here, we assume
that the demonstrated grasp is always successful and the
object will move together with the end-effectors after it is
grasped. Hence, the pose of the bottle that is considered
in this experiment is the one at the beginning of each
demonstration. Moreover, we also assume that the grasping
points on the bottle are the same in all demonstrations.
Videos of the reproduction in the real robot are available
at http://joaosilverio.weebly.com/Humanoids18 .

A. Setup

The upper-body of the COMAN robot comprises 17
DOFs: 3 DOFs for the waist and 7 for each arm, with the
kinematic chains of both arms sharing the 3 waist joints. We
define the differential kinematics of the left and right end-

effectors as
[
ẋT
L ω

T
L ẋ

T
R ωT

R

]T
= Jupq̇, where Jup is the

upper-body Jacobian, ẋL,ωL, ẋR,ωR are the left and right

end-effector velocities and q̇ =
[
q̇TW q̇TL q̇

T
R

]T
represents

the concatenation of waist, left and right arm joint velocities.

∗Alternatively, kinesthetic teaching or optical tracking of movements
from humans could be used.

Fig. 2: Demonstrations of the bimanual shaking task in simulation. First:
The robot is in a neutral starting pose. Second: Reaching for the bottle and
grasping it. Third: Bringing the bottle close to the torso. Fourth: Shaking
movement executed through rhythmic oscillations of both shoulder joints.

Fig. 3: Left end-effector position (in meters) with respect to the initial bottle
coordinate system (prior to the grasp). Black lines represent demonstrations
while the red line represents one reproduction. Ellipses depict the Gaussian
components of the model (isocontour of one standard deviation). The shaded
areas mark the duration of the reaching and shaking phases.

Fig. 4: Left end-effector orientation (as a unit quaternion) with respect to
the initial bottle coordinate system (prior to the grasp). The solid red lines
represent the reproduction using a TP-GMM that encodes both position and
orientation. The dashed lines correspond to a reproduction with a TP-GMM
that encodes only position.

Fig. 5: Waist joints (pitch and yaw) and shoulder joint of the left arm (in
radians). Notice the low variability of the shoulder joint during the shaking
part (second shaded area) and how it is captured by the model.



The Jacobian matrix is given by [15], Jup =
[
JW |L JL 0

JW |R 0 JR

]
,

where JW |L, JW |R denote the Jacobians that account for
the effect of the waist joints on left and right end-effector
velocities. JL and JR correspond to the Jacobians of the left
and right end-effectors from the waist link. The minimum
norm inverse kinematics solution is given in this case by
ˆ̇q =

[
ˆ̇q
T

W
ˆ̇q
T

L
ˆ̇q
T

R

]T
=J†up

[
ẋT
L ω

T
L ẋ

T
R ω

T
R

]T
, where J†up is the

right pseudo-inverse of Jup.
We collected 10 demonstrations of the skill, each of them

with different initial bottle poses and a duration of approxi-
mately 13 seconds. In each demonstration, we recorded both
end-effector poses with respect to the initial bottle frame and
joint angles. Temporal alignment of the demonstrations was
achieved using Dynamic Time Warping [16]. We used a TP-
GMM with K = 10 components, chosen empirically. For this
problem we considered P = 2 projection operators. The first
operator is a concatenation of (6) and (15), for position and
orientation constraints, parameterized with the initial pose of
the bottle {p(1)

t ,R
(1)
t , ε

(1)
t },

A
(1)
t =J†up


R

(1)
t 0 0 0

0 H̄∗(ε̄L,t−1)
+

H(ε
(1)
t ) 0 0

0 0 R
(1)
t 0

0 0 0 H̄∗(ε̄R,t−1)
+

H(ε
(1)
t )

, (16)

b
(1)
t = J†up

[
p
(1)
t −xL,t−1

0

p
(1)
t −xR,t−1

0

]
+ qt−1. (17)

The second projection operator is the canonical one,
A

(2)
t = I, b

(2)
t = 0. Subscripts L and R denote left and right

end-effectors.

B. Results

We employed the learned TP-GMM to generate joint
references q̂t, for every time step of the reproduction, that
were fed to a joint position controller, as per Algorithm 1.
Figures 3-5 show the demonstration data over time† (black
lines), in operational and configuration spaces, together with
the Gaussian components obtained after EM (green ellipses).
In addition we also plot the references generated by GMR
(red lines), for a new position and orientation of the bottle.
In Figures 3 and 4 we see that, during the reach and grasp
movement, there is low variability in the demonstrations,
both in position and orientation, when the end-effector is
touching the bottle (t ≈ 4s). This is successfully encoded
by the model (narrow Gaussians showing low variance), as
this aspect of the skill is important for a correct completion
of the task. It follows that the synthesized movement (solid
red line) closely matches the demonstrations in the regions
of low variability. Note that, after the grasp (t > 7s), the
variance increases as the end-effectors move away from the
initial bottle pose to perform the shaking movement. In
Figure 4, the dashed red line corresponds to a different re-
production of the task using a TP-GMM that does not encode
orientation constraints. The resulting curves strongly differ

†Due to space limitations we only plot data corresponding to the left
arm.

Fig. 6: Shoulder joint angle estimation (radians) from each space (red and
green) and the resulting reference after TP-GMM (black). Each estimate has
an associated mean (solid line) and variance (light color envelope), learned
from demonstrations and synthesized during reproduction.

from the demonstrations, attesting that orientation encoding
is indeed essential in this task (i.e. inadequate orientations
result in unsuccessful grasps). Figure 5 shows that, from the
beginning of the shaking phase (t ≈ 8s), the shoulder joint
(bottom graph) exhibits a consistent oscillatory pattern that
is modeled by 3 Gaussians, which is adequately captured and
synthesized by the model. This contrasts with the other joints,
which do not influence the shaking. When using the novel
task parameters, each candidate projection operator corre-
sponds to a possible configuration space solution. The weight
of each solution is estimated from the demonstrations, based
on the variability in the data and the covariance matrices
of the Gaussian components encoding it. Figure 6 shows
that TP-GMM correctly extracted the most relevant solution
according to the requirements of the task. Notice how, until
t≈5s, TP-GMM (black line) matches the candidate solution
given by the bottle coordinate system (red line). Since the
variability encoded in this coordinate system is low compared
to that of the configuration space (because reaching and
grasping is done in operational space), the Gaussian product
(2) favors this solution. This is achieved through the linear
transformation properties of Gaussians, that allow for both
centers and covariance matrices to be locally mapped from
operational to configuration space using the proposed linear
operators. Similarly, during the shaking phase, after t≈ 8s,
the reference generated for the shoulder joint matches the
solution obtained using the canonical projection operator.
This is because the shaking movement results in a consistent
oscillatory pattern of shoulder joints, observed during the
demonstrations as seen in Figure 5. These results show that
the proposed TP-GMM formulation is a viable solution for
encoding relevant task features in both configuration and
operational spaces, including orientation.

Finally, Figure 1 shows the two distinct phases of the
movement during a reproduction in the real COMAN plat-
form. In this experiment, we used a tray to carry a shaker
towards COMAN, where an optical tracking system provided
the initial shaker pose to the robot. In the top row of Figure 1,
the robot takes into account the operational space constraints
as it reaches for the bottle, while in the bottom row, the
robot shakes the grasped bottle with rhythmic shoulder
movements. In both parts of the movement, the operational
and configuration space constraints are properly replicated.

V. CONCLUSIONS

We presented a framework for human-robot transfer of bi-
manual skills based on TP-GMM, which permits the consid-



eration of constraints in configuration and operational spaces,
including orientation. The approach was validated in the
COMAN robot which learned a bimanual task that required
motion patterns in both spaces, for a proper execution.

In future work we will investigate equivalent formulations
of orientation operators for torque controllers. Torque control
is present in most modern robots and it has been shown in
[17] that it allows for teaching force constraints to robots,
in addition to kinematic ones such as those considered here.
Finally, we plan to study how the proposed approach can be
combined with Riemannian formulations [18] for learning
end-effector poses. While in our work the spherical geometry
of S3 is approximated by the K Gaussians in the TP-GMM,
such formulations may allow for a more precise encoding
of orientation constraints by accounting for the unit norm
constraint.

APPENDIX: UNIT QUATERNIONS

A unit quaternion ε ∈ S3 is defined by
ε = [ε0 ε1 ε2 ε3]

T
=
[
v uT

]T
, where v ∈ R and

u ∈ R3, following the notation used by [14], are the
real and vector parts of the quaternion. The conjugate of
a unit quaternion is denoted by ε̄ =

[
u − uT

]T
. As the

name implies, unit quaternions have unitary norm, i.e.,
v2 + uTu = ε20 + ε21 + ε22 + ε23 = 1.

Composition of unit quaternions: Similarly to the product
between rotation matrices, the quaternion product is non-
commutative. It is defined by

ε1 ∗ ε2 =

[
v1v2 − uT

1u2

v1u2 + v2u1 + u1 × u2

]
, (18)

and it can be interpreted as a rotation operator: it rotates the
frame whose orientation is described by ε2 by the rotation
defined by ε1. Moreover, the quaternion product ε1∗ε̄2 yields
the quaternion that rotates ε2 into ε1.

Quaternion matrix: The product between two quaternions
α = [α0 α1 α2 α3]

T and β = [β0 β1 β2 β3]
T can also be

written in matrix form by resorting to Hamilton operators
(quaternion matrices):

α ∗ β =
+

H(α)β = H̄(β)α, (19)

with Hamilton operators
+

H , H̄ defined by (see also [19])

+

H(α)=

[ α0 −α1 −α2 −α3
α1 α0 −α3 α2
α2 α3 α0 −α1
α3 −α2 α1 α0

]
, H̄(β)=

[
β0 −β1 −β2 −β3

β1 β0 β3 −β2

β2 −β3 β0 β1

β3 β2 −β1 β0

]
. (20)

Notice the commutativity between
+

H and H̄ in (19).
Even though the quaternion product is non-commutative,
Hamilton operators commute between them. This result is
useful when we want to change the order of the quaternions
being multiplied without affecting the resulting orientation.
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