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João Silvério, Guillaume Clivaz and Sylvain Calinon

Abstract— Collaborative robots offer increased interaction
capabilities at relatively low cost but in contrast to their in-
dustrial counterparts they inevitably lack precision. Moreover,
in addition to the robots’ own imperfect models, day-to-day
operations entail various sources of errors that despite being
small rapidly accumulate. This happens as tasks change and
robots are re-programmed, often requiring time-consuming
calibrations. These aspects strongly limit the application of
collaborative robots in tasks demanding high precision (e.g.
watch-making). We address this problem by relying on a dual-
arm system with laser-based sensing to measure relative poses
between objects of interest and compensate for pose errors
coming from robot proprioception. Our approach leverages
previous knowledge of object 3D models in combination with
point cloud registration to efficiently extract relevant poses and
compute corrective trajectories. This results in high-precision
assembly behaviors. The approach is validated in a needle
threading experiment, with a 150µm thread and a 300µm hole,
and a USB insertion task using two 7-axis Panda robots.

I. INTRODUCTION

In recent years, small parts assembly has become a popular
research topic in robotics [1], [2]. With the advent of
collaborative robots, such as the Franka Emika Panda robots
in Fig. 1, this research direction gains special relevance.
As safe, compliant and affordable platforms, collaborative
robots often rely on torque control and less costly designs
when compared to their industrial counterparts. This comes
at the expense of precision, which is especially noticeable
in tasks where tolerance is in the sub-millimeter range, such
as needle threading (Fig. 1). Indeed, despite having good
repeatability, the accuracy of most collaborative robots does
not allow them to rely on proprioception alone for this
kind of tasks (Fig. 2). With the dynamic nature of modern
factories, in which collaborative robots are meant to excel,
and all the associated perception and re-programming, it
becomes clear that robust solutions for manipulating small
parts are required.

A popular approach to circumvent imperfect propriocep-
tion is to combine control with sensory feedback. This type
of approach takes inspiration from how humans, who have
centimeter-level repeatability, perform manipulation tasks by
incorporating feedback from vision [3] or touch [4]. In high-
precision manipulation tasks, tactile feedback is often poor
(e.g. needle threading), undesirable (e.g. small components
are often fragile) or unreliable (due to low magnitude of the
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Fig. 1: Proposed dual-arm system for high-precision insertion tasks per-
forming a needle threading operation. The sensing arm (left) moves a high-
resolution sensing device (in this case a laser scanner) in the direction of the
red arrow to compute the insertion poses with high precision. The assem-
bling arm (right) performs the insertion by tracking a low amplitude relative
trajectory which ensures the insertion, overcoming existing modeling errors.

forces involved). Hence, visual or spatial perception are the
most promising types of feedback. Here, we propose a dual-
arm solution with laser scanning to address the precision
problem (Section III). The general idea is to have one arm
responsible for manipulation (e.g. assembly, insertion) while
the other measures the poses between the object being ma-
nipulated and the part where it will be placed (e.g. thread tip
and needle hole in Fig. 1). Having the relevant poses, a low-
amplitude relative trajectory that compensates pose errors
is computed and applied to the manipulator such that the
object pose is corrected, resulting in high-precision assembly
behaviors. Our approach leverages previous knowledge of
the objects’ 3D models in combination with registration of
high-resolution point clouds (we use a laser scanner with
a reference 1.5µm depth resolution and 2048 points/profile
along the x-axis) to efficiently extract relevant poses. For this
aspect, we argue that exploiting previously available CAD
models, similarly to [2], [5], [6], can have a strong practi-
cal impact in high-precision manipulation for collaborative
robots. In summary, this paper advances the state-of-the-art
in four main ways by:

1) introducing a novel approach to perform sub-
millimeter insertion tasks using collaborative robots;

2) relying on laser scanning in the µ-meter range;
3) being a dual-arm approach, which provides the possi-
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Fig. 2: Difference between repeatability and accuracy as per ISO norm
9283:1998 [8]. Each black point corresponds to an illustrative robot motion,
directed to the red ‘×’ in the middle. Modern collaborative robots tend
to belong to the third case (better repeatability than accuracy). Image
reproduced from [9].

bility to implement rich sensing behaviors; and
4) leveraging pre-existing CAD models for sub-

millimeter assembly tasks.
To the best of our knowledge, no previous work has

addressed the issue of sub-millimeter manipulation with
collaborative robots using high-resolution laser sensing. The
impact of our solution is not limited to the applications
showcased in Sections IV–V, but has potential in any area
requiring small part manipulation, e.g. watch-making [1] and
surgery [7] (we discuss possible limitations in Section VI).

II. RELATED WORK

Visual servoing [3] is a classical approach for handling
uncertain feedback signals, whether proprioceptive or from
the environment. Therefore, it has been a popular choice
in past works on small parts manipulation [7], [5], [10],
[11], [12]. The answer to what type of visual servoing
should be used often boils down to the specificities of the
application such as the available hardware and the properties
of the scene and objects involved (e.g. lighting, textures).
Recent work from Roveda et al. on 6D pose estimation
[6] brings forward the insight that CAD-based methods are
well suited for dynamic scenarios, such as Industry-4.0-type
plants where appropriate lighting is often not guaranteed and
where objects often have little texture. Similarly to our work,
[6] relies on point cloud registration to find object poses,
however at a much larger object scale. We follow their insight
and rely on CAD models to obtain reference point clouds
for registration. When not available, we use the sensing arm
to model relevant objects. Interestingly, Tamadazte et al.
[5] also proposed a CAD-model-based tracking method, but
applied to visual servoing (without point cloud registration).
Their micro-assembly approach is, however, not trivial to
extend to dynamic environments like the ones we envision.

Our approach can be seen as a form of visual servoing
where the sensory feedback is not provided continuously
but every time a new scan is performed. Due to the low
amplitude of the corrective trajectory that is computed, pro-
prioception errors do not accumulate to a degree where the
task is compromised. Additionally, the fact that the computed
trajectory is relative, i.e., computed between two object poses
represented in the same reference frame, alleviates the need
for very precise calibrations. The distinguishing feature of
our work on the sensing side is the very precise point clouds
that we operate on, which come from the use of a high-
resolution laser line scanner [13]. Depth sensing is a popular

approach to modeling objects of various sizes, e.g. bridges
[14] or daily-life objects [15]. We here study the applicability
at much lower scales.

Finally, we highlight the high reproducibility of this work.
By using popular collaborative robots, commercially avail-
able sensors, benchmark tools [2] and common daily-life
objects (e.g. needles, threads), our results are easy to replicate
when compared to other works on the topic that require more
specialized robots, objects and setups, e.g. [5], [7], [12].

III. PROPOSED APPROACH

A. Overview

The proposed approach revolves around the setup in Fig. 1.
In that figure we see one robot holding a high-resolution laser
scanner and another holding a thread. Throughout the paper
we will refer to the former as the sensing arm and the latter
as the assembling arm. While in Fig. 1 the assembling arm
is holding a thread, generically this can be any object that
needs to be inserted/fit into another object. We will assume
that the action that the assembling arm must perform comes
down to an insertion (threading, assembly or other).

Figure 3 gives an overview of our method. Both
arms start with the knowledge of the insertion pose,
pins =

[
xT
ins q

T
ins

]T
where xins ∈ R3, qins ∈ S3. This pose

represents an initial guess about where the insertion will take
place in the robot workspace and is used to bring the laser
scanner close enough that a point cloud of both the object to
be inserted and its counterpart (where it will be inserted) can
be collected. Both pins and the initial poses of both arms
(see first two boxes in Fig. 3) can be collected beforehand,
e.g. by kinesthetic teaching.

Once the scanner is close enough to the insertion pose, a
point cloud Pscan is collected. This point cloud can contain
sub-point-clouds that correspond to both the object to be
inserted and the insertion target (e.g. a thread and a needle).
With Pscan, point cloud registration is performed (fourth box
in Fig. 3), against a reference point cloud Pref , from which
the poses of the object to be inserted pobj and the insertion
target p∗

ins are extracted. With pobj and p∗
ins, a trajectory

that brings the end-effector to the final insertion pose is
computed and sent to the assembling arm to be tracked (last
two boxes in Fig. 3). Since the resulting trajectory will have
a very low amplitude, any modeling errors (e.g. kinematic
uncertainty) that might exist are unlikely to accumulate
enough to compromise the insertion.

The approach that we propose is both modular and generic
by design. For instance, any box in Fig. 3 plays a distinct
role that depends only on the completion of the previous one
in the chain. Additionally, we impose no constraint on how
each module is implemented, e.g. the specific motion of the
sensing arm or the registration algorithm. Next, we describe
our proposed implementations and a few considerations.

B. Scanning

The sensing arm is responsible for obtaining a high-
resolution point cloud Pscan of both the object to be inserted
and the part where it will be inserted (both assumed rigid



Fig. 3: Diagram of the proposed dual-arm approach.

enough not to deform significantly during insertion). Note
that there is the possibility to run multiple scans with
different poses if necessary (e.g. for improving Pscan). An
important aspect to consider is the transformation between
the sensor reference frame and the robot base. Here we used
the technical drawing from the sensor manual to manually
compute the pose of the scanner with respect to the robot
base. Calibration techniques like the one introduced by
Lembono et al. [16] could be used either when an accurate
model is unavailable or to refine an initial estimate. It should
be noted, however, that the usual concerns with calibration
precision are alleviated in our approach, since we rely on a
relative trajectory, given the poses pobj , p∗

ins (Section III-D).

C. Point cloud registration

From Pscan we estimate pobj and p∗
ins. For this we rely

on point cloud registration. Note that, with a high-resolution
laser scanner such as the one we use, the point density will
be very high. This is crucial for high-precision insertions.
Similarly to [6] we pre-process Pscan, as a means to remove
noise and keep only the most important points. We also
need the original point clouds of the objects whose pose
we intend to discover, which we refer to as Pref . One way
to obtain Pref is by scanning objects beforehand and storing
their point clouds. However, as highlighted in [2], in many
automation processes the CAD models of the objects are
readily available. We propose to use them whenever possible
to obtain Pref . A myriad of tools exist for converting CAD
models to point clouds. Here we used Blender [17].

For pose estimation, we used Algorithm 1: a combination
of RANSAC [18], for a coarse initial registration of Pscan
and Pref , and ICP [19], for refining the result. Particularly,
we relied on their implementations from the Point Cloud
Library (PCL) [20]. From the end-effector pose, we compute
an initial guess of the manipulated object orientation q0 that
we use to filter out possible poor matches from RANSAC.
For objects that are not attached to the robot, other heuristics
can be used to compute q0 (e.g. a prior on pointing direction).
When poor registration from RANSAC occurs, which can
hinder ICP performance, it is most often a consequence

Algorithm 1: Pose estimation via point cloud regis-
tration

Input : Point clouds Pscan, Pref ; thresholds ρICP ,
ρrot; initial estimate of object orientation q0

Output: Pose of scanned object p̂ =
[
x̂T q̂T

]T
1 filter and downsample Pscan;
2 initialize ICP best fitness score f∗ICP = 1e6;
3 while f∗ICP > ρICP do
4 p̂, P̂ ← RANSAC(Pscan, Pref );
5 if dφ(q̂,q0) < ρrot then
6 fICP ,pICP ← ICP(Pscan, P̂);
7 if fICP < f∗ICP then
8 f∗ICP ← fICP ;
9 p̂← pICP ;

10 end
11 end
12 end

of orientation mismatches. In order to quantify these, we
compute an orientation error dφ(q̂, q0) [21] between the
RANSAC-estimated orientation q̂ and q0. We then evaluate
it against a threshold ρrot (set loosely enough to only reject
unrealistic matches) to keep or reject the registration. Finally,
we define a threshold ρICP to stop the algorithm when
the distance between point clouds is small enough. Both
thresholds are chosen empirically. In Algorithm 1, f,P,p
denote fitness scores, point clouds and poses, respectively.
Only the outputs of RANSAC() and ICP() that are relevant
to the approach are indicated in rows 4 and 6.

D. Trajectory planning and insertion

Using Algorithm 1 we obtain the poses p∗
ins and pobj .

After knowing these poses we use spline interpolation to
compute a corrective Cartesian trajectory for the assem-
bling arm {p1, . . . ,pT }, where T is the time horizon, that
compensates insertion pose errors. Since p∗

ins and pobj are
represented in the same reference frame (the one of the
sensing arm), a trajectory that connects the two poses is
relative in nature, i.e. it can be applied as an offset so
that the robot moves incrementally from its current state.
One positive side effect is that the need for a very precise
calibration of the sensor (as well as between the robot’s
bases, which here was manually estimated) is considerably
alleviated. In this work we used spline interpolation to plan
relative trajectories but more elaborated planning can be
applied.

IV. EXPERIMENT I - NEEDLE THREADING

We applied the proposed approach to a needle threading
experiment, a scenario that demands high precision.

A. Setup

The experimental setup is shown in Fig. 1. The assembling
arm holds a thread that is to be inserted in the needle
hole. Our evaluation considers three different aspects: initial



Fig. 4: Three different needle poses used in the evaluation. We refer to each
of these settings as needle 1, needle 2 and needle 3, by the order they appear
in the figure.

(a) Insertion configuration
1 (IC1).

(b) Insertion configuration
2 (IC2).

Fig. 5: Two different robot configurations used for threading. The effect
of changing the robot configuration on the insertion performance was
significant in the final results.

conditions, testing settings and threading strategies. Initial
conditions refer to the robot configuration before it starts
moving towards the needle. Testing settings correspond to
different needle poses. Threading strategies pertain to the
robot configuration when inserting the thread and whether
or not it uses sensory feedback. We now elaborate on these.

a) Initial conditions: Every time the robot per-
forms an insertion, regardless of the threading strategy
and needle pose, it starts the motion at one of ten
previously recorded joint configurations q(1), . . . , q(10).
These were recorded such that the position of the
end-effector at each joint configuration q(i) is fur-
ther away from the insertion pose than the previous,
i.e. ‖x(i) − xins‖ > ‖x(i−1) − xins‖, i = 2, . . . , 10, where
x(i) = f(q(i)) is the end-effector position and f(.) is the
forward kinematics function.

b) Testing settings: We report results for three different
needle poses (Fig. 4). Testing the approach with different
needle poses allows us to evaluate its robustness when task
conditions change. At the scale of this task, variations such as
the ones in Fig. 5, which would normally seem negligible,
can cause a strong impact on performance and are worth
investigating. Prior to evaluations on any given needle pose,
we performed an insertion on that needle and stored the pose
of the assembling arm end-effector pins. For each needle
pose we compared three different threading strategies.

c) Threading strategies: We categorize threading strate-
gies by whether the robot uses the laser scanner (insertion
with sensory feedback) or not (proprioception only). In the
latter case, we further break down the evaluation into which
of two possible joint configurations IC1 and IC2 (Fig. 5)
the robot uses during insertion. The null space of the task
was used to bias the inverse kinematics (IK) solution to stay
close to IC1 or IC2. The difference between IC1 and IC2 is
that the former is the configuration of the robot during the
recorded insertion and the latter is the configuration obtained

TABLE I: Success rates from needle threading experiment. Each number in
the columns ’Needle 1 ... 3’ corresponds to 10 insertion attempts.

Strategy
Setting

Total
Needle 1 Needle 2 Needle 3

Proprioception only +
IC1

50% 60% 70% 60%

Proprioception only +
IC2

0% 0% 0% 0%

With laser scanner 100% 100%† 90% 96.7%
† Includes 2 failures that were successful upon re-scanning.

by taking IC1 and adding ∼ π/2 to the first joint (the rest
of the joints seen in Fig.5b adapt accordingly so that the
robot can accomplish the task). We hypothesize that IC1
will perform better than IC2 since it requires smaller joint
displacements with respect to when pins was recorded. In
other words, IC2 will result in higher pose errors (more failed
insertions). Specifically, the compared strategies were:

1) Proprioception only + IC1. The robot threads the
needle using proprioception only and IC1 (Fig. 5a).

2) Proprioception only + IC2. The robot threads the
needle relying on proprioception and IC2 (Fig. 5b).

3) Insertion with sensory feedback (laser scanner). The
robot threads the needle using IC2 and compensates
for insertion pose errors using sensory feedback as per
Section III.

B. Hardware and control

In our experiments (including Section V) we used a Micro-
Epsilon LLT3000-25/BL laser scanner [13] attached to the
left robot arm. We operated the scanner at its reference
resolutions of 1.5µm (depth) and 12µm (x-axis, 2048
points/profile). Moreover, for needle threading, we used a
150µm-width thread and a needle with a hole width in the
range 300− 350µm along the smallest axis. Notice both the
low scale and tolerance of this insertion task.

As robot platform, we used two 7-DoF Franka Emika
Panda arms. The repeatability of the Panda arm, as reported
by the manufacturer, is 0.1mm. To the best of our knowledge
there is no official value for accuracy. In order to ensure the
highest possible precision we used position control.

C. Results

Here we describe the obtained results from each strategy.
All the reported results (including those in Section V) can be
seen in the supplementary videos, also available at https:
//sites.google.com/view/laser-cobots/.

a) Insertion with proprioception only and IC1: Given
pins, the robot is commanded to reach that end-effector pose,
starting from different poses in the workspace. Table I shows
the obtained success rates for this strategy (first row). The
results show that, on average, the robot managed to thread
the needle 60% of the times. Figure 6 (second row) further
shows this. As the initial poses are farther and farther away
from the insertion pose, the success rate decreases. This
can be due to a combination of the wider range of joint
motions required to reach the insertion pose, uncertainties

https://sites.google.com/view/laser-cobots/
https://sites.google.com/view/laser-cobots/


Fig. 6: Snapshots of the needle threading experiment, where we show 5 out of 10 results for the second needle pose in Fig. 4. The full results are
reported in Table I. Top row: Initial poses from which the robot performed the insertion. Second row: Insertion with proprioception only and IC1 as
robot configuration. Third row: Results for proprioception only and IC2. Bottom row: Insertion after correction from the laser scanner. Without sensory
feedback, the performance deteriorates both with the distance to the insertion pose and with the insertion configuration. A detailed visualization including
all cases is given in the supplementary videos.

in the planned insertion trajectories (which have a bigger
length as the robot starts farther away) and potentially the
accumulation of small deformations of the (non-rigid) thread
after several attempts. Nonetheless, owing to the 0.1mm
repeatability, a 60% success rate at this scale is noteworthy.

b) Insertion with proprioception only and IC2: The
results showed that threading is never successful when the
insertion joint configuration differs from the original one by
a non-negligible amount (see Table I, second row). The third
row in Fig. 6 is clear in this aspect, with the thread always
ending up either below or before the needle. The arguments
given in the previous paragraph hold for this case as well.
Here, since not only the starting poses, but also the insertion
configuration differs by a significant amount, the previous
observations are amplified.

c) Insertion with laser scanner: Finally, using the pro-
posed approach with laser scanning, the previous results
were considerably improved. As seen in Table I insertion
success rates reach values closer to 100%. In this scenario,
the robot was commanded to thread the needle, by first using
its proprioception alone as in the previous cases. Once it
failed the insertion, the sensing arm performs a scan to obtain
a point cloud of the needle and the thread. Using this point
cloud it runs Algorithm 1 to find the needle pose. Figure
7 shows an example of a scan. Notice the high density of
the cloud, for such a small object. The device resolution
proves essential for this sort of tasks. In the bottom-right
corner of the image we can see a small point cloud, which
corresponds to the thread tip. In our experiments we selected
the tip manually on the GUI, but this step can alternatively

Fig. 7: Example of point cloud obtained after scanning the needle and the
thread. The diagonal cluster of points is the needle point cloud Pscan. The
registered model Pref (green) after Algorithm 1 is also shown. Note that
in this experiment Pref was obtained by scanning the needle a priori. The
small point cloud on the bottom-right corner is the thread tip.

be automated, similarly to how the needle pose is found.
With the needle pose and the thread tip, the robot computes a
low amplitude trajectory that compensates for the pose error,
ensuring insertion. It is worth pointing out that the results in
the third row of Table I include two attempts where the robot
initially failed the insertion but, upon a re-scan, succeeded.
Indeed, by bringing sensory feedback into the loop, one is
able not only to detect errors but also to correct them. The
bottom row of Fig. 6 shows 5 out of 10 successful insertions
for the needle 2 setting.

V. EXPERIMENT II - USB CABLE INSERTION

In a second experiment we used the NIST Task Board 1 [2]
to study the insertion of a USB plug (Fig. 8). This time we
obtained both socket and plug point clouds from their CAD
models, made available by NIST. Similarly to Section IV,
we computed success rates for 10 insertions, where the robot
started at 10 different pre-recorded configurations. Note that
success rates are one of the performance metrics proposed



TABLE II: Success rates for 10 USB insertions.

Strategy Total

Proprioception only + IC1 90%
Proprioception only + IC2 0%

With laser scanner 100%

Fig. 8: USB insertion setup with the NIST Task Board 1.

in [2]. We considered two different robot configurations IC1
and IC2 following the same convention as in Section IV. In
this case, we evaluated the approach for one single socket
pose. When inserting with sensory feedback, both socket and
USB plug are scanned and registered in order to compute
pobj and p∗

ins.
Table II shows the obtained success rates. As in the needle

scenario, all evaluations in the first two rows consisted of
reaching a pre-recorded successful pose pins. Notice that, in
the first row, the success rate is higher than the one obtained
in the previous experiment. One possible explanation is that
the tolerance is slightly higher in this setup. Nevertheless, as
in the previous case, when changing the joint configuration to
IC2 the performance rapidly deteriorates (second row in Ta-
ble II). In most practical applications, this effect will appear
naturally since the robot needs to modify its configuration
when object poses change. Similarly to Section IV, sensory
feedback strongly improved the performance (last row of
Table II). Figure 9 shows typical point clouds obtained for
the USB plug. The high resolution once again stands out.
The registration results were particularly robust, which is
well-attested by the 100% success rate.

VI. DISCUSSION

The results in Sections IV and V show that the insertion
performance improves when feedback from the laser scanner
is considered by the assembling arm. This is especially
noticeable in the needle threading task where the tolerance is
very low. Despite the positive results, some aspects deserve
attention. In Table I, three insertions with laser scanner were

Fig. 9: Front and side view of the USB plug registration. White: Scanned
point cloud Pscan. Green: Point cloud Pref , obtained from the CAD
model (here aligned with Pscan after Algorithm 1). Since the plug was
scanned from the front, we relied on a subpart of the whole CAD model.

unsuccessful in the first attempt. A possible explanation is the
presence of outliers in the point cloud, that affect registration.
In our experience, rescanning and trying again (after the
failure) can help. However, detecting failure might require
a human operator to monitor the scene which may hinder
the application in high-volume scenarios. Detecting failure
and fully automating the solution was beyond the scope of
this paper.

In the experimental evaluations only position correction
was required but some tasks may require orientation as well.
Correcting for both position and orientation simultaneously
can be difficult since orientation motions may require too
large joint displacements, leading to significant (at this scale)
pose errors. One possible way to use our approach in those
scenarios is to split the insertion into two phases, where the
position and orientation errors are corrected sequentially.

Finally, since the scanning arm is itself a collaborative
robot, it is recommended to minimize the amplitude of joint
motions during scans, so as to mitigate kinematic errors
as much as possible (which could lead to inaccurate point
clouds). One might also be tempted to mount the sensor
on the assembling arm (to use just one robot) but since
the required motion between scan and insertion could be
large, there is a high chance that too much kinematic error
is accumulated and the task is compromised.

VII. CONCLUSIONS

We proposed a solution that enables collaborative robots to
perform high precision tasks. We have shown that, using our
approach, a Panda robot could insert a 150µm thread into
a 300µm needle hole with a success rate close to 100%.
The approach consists of a dual-arm system where one arm
controls the motion of a high-resolution laser scanner while
the other performs the insertion. It relies on the registration of
scanned point clouds to find poses of objects of interest and
plan an insertion trajectory that corrects initially imprecise
ones. It is particularly well suited to low-volume, high-
mixture manufacturing scenarios, where collaborative robots
are meant to excel regardless of object size.

In future work we plan to extend the approach to consider
the end-effector and object orientations, and perform inser-
tions in optimal ways by relying on model predictive control
formulations on Riemannian manifolds [22]. The possibility
to use other benchmarking protocols (e.g. [1]), additional
metrics such as completion time [2] and to lower the total
cost of the solution will also be studied.
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