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Our work focuses on human-centered robotics applications in which the robots can acquire new skills from
only few demonstrations and interactions. It requires the development of models that can exploit the structure
and geometry of the acquired data in an efficient way, the development of optimal control techniques that can
exploit the learned task variations and coordination patterns, and the development of intuitive interfaces
to acquire meaningful demonstrations. The developed approaches can be applied to a wide range of manipulation
skills, with robots that are either close to us (assistive and industrial robots), parts of us (prosthetics and
exoskeletons), or far away from us (teleoperation).

This document presents an overview of the recent research developments in the Robot Learning & Interaction group
at the Idiap Research Institute, with pointers to our most recent publications presenting the proposed approaches in
further details. For each of the proposed research directions, I also discuss ongoing and further work that needs to be
investigated to advance the proposed research lines.

Learning in a handful of trials

The field of machine learning has evolved toward approaches relying on huge amounts of data. In several application
domains, these big datasets are already available or are inexpensive to collect/produce. In contrast, robotics is
characterized by a different problem setting. It should instead be viewed as a wide-ranging data problem, with
models that could start learning from small datasets, and that could still exploit more data if such data become
available during the robot’s lifespan. The current trend of machine learning relying on big datasets can bias the
development of robot learning approaches in a negative way. In contrast to other fields, the data formats in robotics
vary significantly across tasks, environments, users and platforms (different sensors and actuators). Then, the learned
models often need to be interpretable to provide guarantees and to be linked with other techniques.

For these reasons, our group focuses on developing robot learning approaches that can rely on only few
demonstrations or trials. The main challenge boils down to finding structures that can be used in a wide
range of tasks, which requires us to advance research on several fronts, including (from low level to high level):

Geometric structures,
Data structures,
Combination structures,
Learning structures,
which are detailed in the next sections. Efficient robot skills acquisition requires the combination of these different

forms of structures (at model and algorithm levels), as well as the consideration of an efficient trade-off between
learning and exploitation.

In [6], we provide a survey of approaches in robotics to learn skills in a handful of trials.

Geometric structures

Because robots act in a physical world, many fundamental problems in robotics involve geometry, leading to
an increased research effort in geometric methods for robotics in the recent years. To speed up skills acquisition, the
prior knowledge about the physical world can be embedded within the representations of skills and associated learning
algorithms. Our work focuses on Riemannian geometry and geometric algebra to provide such structures, which
are described next.

1/11



Sylvain Calinon Research statement February 2023

Riemannian geometry

. 2 N
\ 4 ‘ S & iy Py f,g .
Y7 4 Y G Qi ‘ :
F ; 5 A
W\':( : ‘ - i V 4 —
Orientations and - Symmetric positive definite Hyperbolic Subspaces
directions matrices, ellipsoids, covariances embeddings 3 2 (planes and lines,
(unit quaternions, (manipulability, stiffness, inertia, (trees, graphs, contact constraints,
mixing coefficients, . centroidal momentum, gains, networks, roadmaps, null space projection
postures in Kendall’s graph Laplacians, positive kernel relations) operators)
shape space) matrices, covariance features)

Data in robotics are characterized by simple but varied geometries. These geometric structures are often underexploited
in learning, planning, control and perception. One of the appeal of using Riemannian geometry in robotics is that it
provides a principled and simple way to extend algorithms initially developed for Euclidean data to other manifolds, by
efficiently taking into account prior geometric knowledge about these manifolds. In particular, Riemannian manifolds
can be connected to a wide range of problems in robotics, including problems relying on Gaussian distributions.
This includes techniques requiring uncertainty and statistical modeling to be computed on structured non-
Euclidean data. Riemannian geometry can similarly be employed for a variety of data in robotics (see the above
figure), including joint angles in revolving articulations, rigid body motions, unit quaternions to represent orientations,
and symmetric positive definite matrices, which can represent sensory data processed as spatial covariances, inertia,
stiffness/manipulability ellipsoids, as well as metrics used in the context of similarity measures.

The combination of statistics and Riemannian geometry offers many research opportunities, and can
contribute to recent challenges in robotics. Further work can be organized in two categories. Firstly, the field of
robotics is abundant in new research developments due to the interdisciplinary aspect and to the richness of the
problems it involves. The common factor in many of these developments is that they rely on some form of statistics
and/or propagation of uncertainty. These models and algorithms are typically developed for standard Euclidean
spaces, where an extension to Riemannian manifolds has several benefits to offer.

Secondly, several Riemannian manifolds remain largely underexploited in robotics, despite the fact that
most of them are mathematically well understood and characterized by simple closed-form expressions. Grassmann
manifolds seem particularly promising to handle problems in robotics with high dimensional datapoints and only few
training data, where subspaces are required in the computation to keep the most essential characteristics of the data.
It is also promising for problems in which hierarchies are considered (such as inverse kinematics with kinematically
redundant robots), because it provides a geometric interpretation of nullspace structures. Other Riemannian
manifolds such as hyperbolic manifolds also seem propitious to bring a probabilistic treatment to dynamical systems,
tree-based structures, graphs, Toeplitz/Hankel matrices or autoregressive models.

In [4], we review the use of Riemannian geometry in robot learning problems and present challenges that further need
to be investigated.

Learning, tracking and transfer of manipulability ellipsoids

Skills transfer can exploit stiffness and manipulability ellipsoids, in the form of geometric descriptors rep-
resenting the skills to be transferred to the robot. As these ellipsoids lie on symmetric positive definite (SPD)
manifolds, Riemannian geometry can be used to learn and reproduce these descriptors in a probabilistic manner.

Manipulability ellipsoids come in different flavors. They can be defined at several points of interest, such as endeffectors
(including tools held by the robot) and centers of mass. They can be defined for either positions or forces (including
the orientation/rotational part). Manipulability can be described at either kinematic or dynamic levels, for either
open or closed linkages (e.g., for bimanual manipulation or in-hand manipulation), and for either fully actuated or
underactuated systems. This large set of manipulability ellipsoids provide rich descriptors to characterize robot
skills for robots with legs and arms.

Manipulability ellipsoids can handle skills transfer problems involving dissimilar kinematic chains, such as
transferring manipulation skills between humans and robots, or between two robots with different kinematic chains
or capabilities. In such transfer problems, imitation at joint angle level is not possible due to the different structures,
and imitation at endeffector(s) level is limited because it does not encapsulate postural information, which is often
an essential aspect of the skill that needs to be transferred. Manipulability ellipsoids provide intermediate descriptors
that allow postural information to be transferred indirectly, with the advantage that they allow different embodiments
and capabilities to be considered in the skills transfer process.

In [7], we present an overview of our work on using manipulability ellipsoids for learning and control problems in
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robotics. The proposed approach can also be extended to other descriptors represented as ellipsoids, which further
needs to be investigated. In particular, stiffness, feedback gains, inertia, and centroidal momentum have
similar structures. The proposed approach could also potentially be extended to other forms of SPD matrices, such
as kernel matrices used in machine learning algorithms to compute similarities, or graph graph Laplacians (a matrix
representation of a graph that can for example be used to construct a low dimensional embedding of a graph).

Geometric algebra
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Figure 1: Geometric algebra can be used to encode geometric primitives in a uniform manner, such as points, lines, planes, spheres,
ellipsoids or quadric surfaces (depicted in red), as well as the associated transformations M to move from an initial state X to a desired
state X4, which are called motors (depicted in green). In practice, it means that M = f(X, X4) can be described uniquely for different
geometric objects, which is useful in various skillful manipulation contexts such as bimanual coordination, whole-body motion and human-
robot collaboration.

Point tracking Line tracking Plane tracking Circle tracking

Another promising candidate for handling geometric structures in robotics is the framework of geometric algebra,
whose roots can be found in Clifford algebra, a unification of quaternions and Grassmann algebra. Geometric algebra
can be seen as a unification of various frameworks popular in robotics, such as screw theory, Lie algebra or dual
quaternions, while offering great generalization and extension perspectives.

In standard linear algebra, a point in a 3D space can be reached by taking different linear combinations of three basis
vectors ey, es, and es, where all linear combinations of the basis vectors form individual subspaces of the 3D space. In
geometric algebra, more elaborated subspaces are considered, including higher order elements such as bivectors, which
are subspaces spanned by the outer product of two one-dimensional subspaces (e.g., e; A e3). The cross product in
linear algebra is a special case of the outer product, which is valid only for 3D vectors, and whose result is given in the
form of a vector. In contrast, the outer product can be applied to any dimensions, whose result represents an oriented
space (e.g., area, volume) swept by the vectors. Geometric algebra relies on the notion of a geometric product, which
is the sum of an inner and outer product e;es = e - es + €1 A es. The resulting elements are called multivectors. This
representation allows geometric primitives to be encoded in a uniform manner, by representing 3D geometric objects
in a higher dimension space. Both geometric objects and transformations use the same algebra and can then
also be represented in a homogeneous manner as elements of this higher dimension space, see Figure 1.

This representation is thus an interesting candidate to provide a single algebra for geometric reasoning, alleviating
the need of utilizing multiple algebras to express geometric relations. While previous solutions typically needed to
mix different formalisms, our work explores how the unification of concepts provided by geometric algebra can be
used to solve diverse manipulation problems without leaving the proposed algebra. In robotics, geometric algebra
operations typically allow translations and rotations to be treated in the same way, without requiring us to switch
between different algebras, as is classically done when handling position data in a Cartesian space and orientation
data as quaternions. Practically, geometric algebra allows geometric operations to be computed in a very
fast way, with compact codes.

Our work leverages the capabilities of geometric algebra in robot manipulation tasks. We show in [10] that the
modeling of cost functions for optimal control can be done uniformly across different geometric primitives, leading to
a low symbolic complexity of the resulting expressions and a geometric intuitiveness. Our benchmarks also show that
such an approach provides faster resolution of robot kinematics problems than state-of-the-art software libraries used
in robotics.

Data structures
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Another type of structure that we exploit relates to the organization of data as multidimensional arrays (also called
tensors). These data appear in various robot tasks, either as the natural organization of sensory/motor data (tactile
arrays, images, kinematic chains), as the result of standardized preprocessing steps (moving time windows, covariance
features), data in multiple coordinate systems, or in the form of basis functions decompositions. Developed in the
fields of multilinear algebra and tensor methods, these approaches extend linear factorization techniques such
as singular value decomposition to multilinear decomposition, without requiring the transformation of the tensors to
vectors or matrices. We exploit these techniques to provide robots with the capability to learn tasks from only
few tensor datapoints, by relying on the multidimensional structure of the data.

Global optimization with tensor train decomposition

(a) (b) (c)
A - A T
e L L y
@ ’\ ¢ @ i | LT ma| ! O ]
5 ° ‘ | o . et
r i N e T
c »\\,/ c | — | ! | :
) k= | I | '
2 F o [ E =8 B : Fff T
3 " .

3 i g“:*ﬂf: P P BEL By

decision variable decision variable Cross approximation (low-rank factorization of matrix data)

o @ (e) )

Lo

wn ©

Zo ATT] ]

3g |

decision variable
I

decision variable

variable

decision

ok i Tensor train (low-rank factorization of tensor data) P(decision variables | task parameters)

Figure 2: Combination of global and local optimization for fast adaptation to new situations, by leveraging offline and online compu-
tation. (a) Local optimization algorithms such as iterative linear quadratic regulators (iLQR) requires good initial estimates to speed up
convergence, to reach good local minima and to find diverse solutions. The figure shows an illustration with two decision variables and
four minima of a cost function. (b) The decision variables space can be discretized to search for initial guesses near the local minima of
the cost functions, which can be used to warm-start local optimizers. (¢) The nalve solution consists of evaluating the cost for each set
of decision variables, which typically does not scale well when more than 2 or 3 decision variables are used, which is the case in robot
control problems. For 2D decision variables, a cross approximation algorithm can be used to approximate the cost function (treated as a
probability distribution). The algorithm iteratively searches for row and column indices to reconstruct the full distribution from a sparse
subset of rows and columns (depicted in colors). It also simultaneously estimates the number of rows and columns required, corresponding
to the rank of the matrix. (d) Control problems in robotics have more than two dimensions, including both task parameters and decision
variables. Learning the joint distribution of task parameters and decision variables can be conducted in an offline phase (through robot
experiences and plays, possibly guided by human demonstrations). This offline learning phase is then followed by an online reproduction
phase in which the robot needs to compute a controller as fast as possible, given a new set of task parameters describing a newly encoun-
tered situation. (e) The cross approximation algorithm can be extended to tensor data by exploiting tensor train decomposition. (f) This
low-rank representation can be used for fast conditional sampling, allowing the robot to generate diverse controllers given a set of task
parameters describing the situation/environment.

Learning and optimization problems in robotics are characterized by two types of variables: 1) task parameters
representing the situation that the robot encounters, typically related to environment variables such as locations of
objects, users or obstacles; and 2) decision variables related to actions that the robot takes, typically related to a
controller acting within a given time window, or the use of basis functions to describe trajectories in control or state
spaces. For each change of task parameters, decision variables need to be recomputed as fast as possible, so that the
robot can fluently collaborate with users and can swiftly react to changes in its environment.

Within the MEMMO and LEARN-REAL projects, we investigate the roles of offline and online learning for optimal
control. The problem is formalized as an optimization problem with a cost function to minimize, parameterized by
task parameters and decision variables. The formulation transforms the minimization of a cost function into the
maximization of a corresponding probability density function. Hence, the problem of finding the minima of a cost
function is transformed into the problem of sampling the maxima of the density function. The proposed approach
does not require gradients to be computed and can find multiple optima, which can be used for global optimization
problems.

The density function is modeled in the offline phase using a tensor train (TT) that exploits the structure between
the task parameters and the decision variables. Tensor train factorization is a modern tool for the representation
of complex nonlinear functions in variable separation form, with robust techniques such as TT-Cross to find the
representation. It allows conditional sampling over the task parameters with priority for higher-density regions. This
property is used for fast online decision-making, with local Gauss-Newton optimization to refine the results, see Figure
2 for an overview.
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The proposed tensor train for global optimization (TTGO) approach has several advantages for robot skills
acquisition. First, the problem formulation makes it a ubiquitous tool. It allows the distribution of computation into
offline and online phases. It can cope with a mix of continuous and discrete variables for optimization thus providing an
alternative to mixed-integer programming. By construction, the decision variables also stay within a bounded domain,
which can be advantageous in some problems (e.g., joint angle limits, control bounds). Another important advantage
of TTGO is that the underlying TT-cross method used to approximate the distribution in TT format can easily be
extended to various forms of human-guided learning, by letting the user sporadically specify task parameters or
decision variables within the iterative process. The first case can be used to provide a scaffolding mechanism for robot
skill acquisition. The second case can be used for the robot to ask for help in specific situations.

In [12], we demonstrated the capability of TTGO for trajectory optimization within a varied set of control and planning
problems for robot manipulators.

Ergodic control applied to insertion tasks

Ergodic control as search behavior

Point tracking Distribution tracking Demonstration of insertion variations Reproduction robust to poor
to provide a reference distribution localization due to sensing errors

A conventional tracking problem in robotics is characterized by a target to reach, requiring a controller to be computed
to reach this target. In ergodic control, instead of providing a single target point, a probability distribution is given
to the robot, which must cover the distribution in an efficient way. Ergodic control thus consists of moving within a
spatial distribution by spending time in each part of the distribution in proportion to its density (namely, “tracking
a distribution” instead of “tracking a point”). The resulting controller generates natural exploration be-
haviors. The underlying objective takes a simple form, corresponding to a tracking problem in the spectral domain
(tracking of frequency components). The advantage of such a control formulation is that it can be easily combined
with other control objectives and constraints.

In robotics, the approach can be exploited in a wide range of problems requiring the automatic exploration of
regions of interest. This is particularly helpful when the available sensing information is not accurate enough to
fulfill the task with a standard controller, but where this information can still guide the robot towards promising areas.
In a collaborative task, it can also be used when the operator’s input is not accurate enough to fully reproduce the
task, which then requires the robot to explore around the requested input (e.g., a point of interest selected by the
operator). For picking and insertion problems, ergodic control can be applied to move around the picking/insertion
point, thereby facilitating the prehension/insertion. It can also be employed for active sensing and localization (either
detected autonomously, or with help by the operator). Here, the robot can plan movements based on the current
information density, and can recompute the commands when new measurements are available (i.e., updating the
spatial distribution used as target).

In ergodic control, the problem is originally formulated as a spectral multiscale coverage (SMC) objective. It
requires the spatial distribution to be decomposed as Fourier series, with a cost function comparing the spectral
decomposition of the robot path with the spectral decomposition of the distribution. The resulting controller allows
the robot to explore the given spatial distribution in a natural manner, by starting from a crude exploration
and by refining the search progressively (i.e., matching the Fourier coefficients with an increasing importance
from low to high frequency components).

The downside of the original ergodic control approach is that it does not scale well to problems requiring exploration
in search space of more than two dimensions. In particular, the original approach would be too slow to consider full
distributions in 6D spaces, which would be ideally required. Indeed, both position and orientation of endeffector(s)
matter in most robot problems, including manipulation, insertion, welding, or the use of tools at the robot endeffectors.

In [13], within the COLLABORATE European project, we demonstrated that the original problem formulation can
be conserved by efficiently compressing the Fourier series decomposition with tensor train (TT) fac-
torization. The proposed solution is efficient both computationally and storage-wise, hence making it suitable for
online implementations, as well as to tackle robot learning problems with a low quantity of training data. The above
figure shows an overview of an insertion experiment conducted with the Siemens gears benchmark requiring full 6D
endeffector poses. Further work is required to extend the approach to online active sensing applications in which the
distributions can change based on the data collected by ergodic control.
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Figure 3: Combination of robot controllers as a product of experts. (a) We extend the principle of movement primitives (superposition of
basis functions as time-dependent trajectories) to behavior primitives (superposition of time-independent controllers). (b) State estimation
in robotics is typically formulated as an information fusion problem. We propose to combine controllers in the same principled way by
using a product of probability density functions, resulting in a shared control formulation in which as set of controllers assist the user to
achieve the task. (¢) We develop behavior primitives in both position and force domains, including the autonomous adaptation to objects,
exploration behaviors, and tasks prioritization.

The term movement primitives refers to an organization of continuous movements in the form of a superposition in
parallel and in series of simpler signals, which can be viewed as “building blocks” to create more complex movements.
This principle of superposing high-level “bricks of motion” from a dictionary, coined in the context of motor
control, remains valid for a wide range of continuous time signals (for both analysis and synthesis). In particular, this
notion can be extended to behavior primitives, which form a richer set of assistive behaviors, see Figure 3-(a). These
behavior primitives correspond to controllers that are either myopic or anticipative, with either time-independent or
time-dependent formulations.

In [11], we showed that the combination of behavior primitives can be formalized as an information fusion problem
in which several sources of information can be modeled as probability distributions. This results in a product of
experts (PoE), a machine learning technique modeling a probability distribution by combining the output from
several simpler distributions. The core idea is to combine several distributions (called experts) by multiplying
their density functions. This allows each expert to make decisions on the basis of a few dimensions,
without having to cover the full dimensionality of a problem. A PoE corresponds to an “and” operation, which
contrasts with a mixture model that corresponds to an “or” operation (by combining several probability distributions
as a weighted sum of their density functions). Thus, each component in a PoE represents a soft constraint. For an
event to be likely under a product model, all constraints must be (approximately) satisfied. In contrast, in a mixture
model, an event is likely if it matches (approximately) with any single expert.

With Gaussian distributions, the fusion problem simplifies to a product of Gaussians (PoG), which can be solved
analytically, where the distributions can either represent robot commands at the current time step (myopic control
system), or trajectory distributions in the control space (anticipative planning system). State estimation is an example
of problems classically solved as an information fusion problem, resulting in a PoG that takes into account uncertainty
in motion and sensor(s) models (a well-known example is the Kalman filter), see Figure 3-(b). A control problem in a
collaborative robot task can be treated in a similar mathematical framework by relying on a product of experts (PoE).
This approach allows multiple behavior primitives to be combined in parallel (including prioritization with nullspace
projection structures, see [11] for details). In this framework, each operator (human or virtual) contributes to the task
by taking into account the (co)variations allowed in a task and the uncertainty of the expertise.

The combination of behavior primitives can be treated within a similar mathematical framework, by relying on products
of experts, where each expert takes care of a specific aspect of the task to achieve. For robot applications, this
approach allows the combination of different controllers, which can be learned separately or altogether (by variational
inference, see [11] for details). With this formulation, a robot can counteract perturbations that have an impact
on the fulfillment of the task, while ignoring other perturbations. It also allows bridges to be created with research
in biomechanics and motor control, with formulations including minimal intervention principles, uncontrolled
manifolds or optimal feedback control. This formulation also opens new perspectives to tackle challenges in
manipulation and assembly with either autonomous robots or cobots, including the handling of both force and position
information, as well as the simultaneous handling of multiple objectives (including physical compliance, manipulability,
safety, and task hierarchies). Figure 3-(c) presents examples of assistive behaviors in the context of manipulation and
assembly skills.
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Next, I show how the PoE/PoG principle can be used for fusing information from multiple coordinate systems.

Task-parameterized movements
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Robot side

To facilitate the acquisition of manipulation skills, task-parameterized models can be exploited to take into account
that movements typically relate to objects, tools or landmarks in the robot’s workspace.

In [1], T present a review of task-parameterized models for learning and control applications. The approach consists
of encoding a movement in multiple coordinate systems (namely, from the perspectives of different objects),
in the form of trajectory distributions. In a new situation (i.e., for new object locations), the reproduction problem
corresponds to a fusion problem, where the variations in the different coordinate systems are exploited to generate
a movement reference tracked with varying gains, providing the robot with a variable impedance behavior that
automatically adapts the precision required by the different phases of the task. For example, in a pick-and-place
task, the robot will be stiff if the object needs to be reached/dropped in a precise way, and will remain compliant in
the other parts of the task. We also showed that the approach could be extended to task prioritization with nullspace
projection operators [14].

For user assistance in collaborative operations, this approach can also be used for local adaptation to objects or
landmarks in the robot’s environment, such as automatically correcting the orientation of a tool held by the
operator to ensure it remains perpendicular to a surface. The above figure presents an example of application for
remote valve turning operations, developed in the context of the DexROV European project. In this example, a task-
parameterized Gaussian mixture model (TP-GMM) approach is used within an optimal control approach to
teleoperate an underwater robot from distance, with a teleoperator wearing an exoskeleton and visualizing a copy of
the robot workspace in a virtual environment. Because of the long communication delays between the teleoperator and
the robot, the locations of the objects or tools of interest are not the same on the teleoperator side and on the robot
side. With a parameterization associated with the locations of objects and tools, this discrepancy can be handled
by adapting locally the movement representation to the position and orientation of the objects/tools, represented as
coordinate systems. The central part of the above figure depicts two coordinate systems (with models represented
in orange and purple), corresponding respectively to the robot and to the valve to be turned. A motion relative to
the valve and to the robot is encoded as GMMs in the two respective coordinate systems. During teleoperation, the
distributions are rotated and translated according to the current situations on the teleoperator side and on the robot
side. Products of Gaussians are then computed at each side to fuse these representations.

The task-parameterized principle can be used as a first starting point to study the fusion of more elaborated coordinate
systems. In the above figure, Cartesian coordinate systems centered on several points of interest were considered. We
currently investigate extensions of the approach to a wider range of coordinate systems, in the form of manifolds
taking into account object symmetries and objects affordances (incl. cylindrical and spherical coordinate
systems), see [16] for a first work in this direction.

Next, I show that the description of movements as trajectory distributions can be extended to control problems by
adopting optimal control formulations, and that such a mathematical framework can be used to create bridges with
research in imitation.
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Skill acquisition encompasses a broad spectrum of learning approaches, from action-level imitation to goal-
level emulation, see [2] for a short review. While emulation requires higher cognitive skills to infer the intended goals
behind a set of actions, imitation allows us to acquire skills in a simple but limited way, by directly mimicking the
movements and actions shown to the learner. Because of its higher level nature, emulation can easily be misinterpreted
as being the only useful mechanism. The two are instead complementary, in the sense that emulation allows greater
generalization (i.e., the learner understands the purpose of the task and can reproduce it in possibly different ways),
while imitation allows us to acquire tasks fast, even if all underlying goals are not fully understood (“copy all, refine
later” strategy).

Similarly, within engineering applications, research on optimal control and reinforcement learning (RL) is tightly
connected to the emulation approach, while research on movement primitives is tightly connected to the imitation
approach. The mutual benefit can be illustrated by considering emulation as a way to make the system more gener-
alizable, while imitation/mimicking can improve the learning rate and the learning scope. Our work investigates the
use of optimal control as a formulation based on a cost that implements the goal-level nature of emulation,
that we combine with the use of control primitives as a formulation based on basis functions to implement the
action-level nature of imitation. In [3], I present several forms of basis functions can be considered to build such
control primitives, including radial basis functions (RBFs), Bernstein polynomials, and Fourier series.

As an example of implementation of the above principle presented in [5], we can rely on Linear quadratic tracking
(LQT) as a simple form of optimal control that trades off tracking and control costs expressed as quadratic terms
over a time horizon, with the evolution of the state described in a linear form. This constrained problem can be
solved by expressing the state and the control commands as trajectories, corresponding to a least squares solution. A
probabilistic interpretation of the LQT solution can be built by using the residuals of this estimate, see (a) in
the above figure. This approach allows the creation of bridges between learning and control.

For example, in learning from demonstration, the observed (co)variations in a task can be formulated as an LQT
objective function, see (b) in the above figure. It then provides a trajectory distribution in control space that can
be converted to a trajectory distribution in state space, with all operations being analytic. Thus, the LQT formulation
allows a controller to be computed from a high-level representation formalized as a cost function, which allows the
approach to be combined easily with other optimal control strategies. Notably, it allows multiple demonstrations of
a movement to be used to estimate a feedback controller. As a result, the (co)variations in the demonstrations
are exploited to provide a minimal intervention control strategy that will selectively reject perturbations,
based on the impact that they can have on the task to achieve. This is effectively attained by automatically regulating
the gains in accordance to the variations in the demonstrations, with low gains in parts of the movement allowing
variations, and higher gains for parts of the movement that are invariant in the demonstrations.

While simple LQT already highlights the advantage of the proposed approach, further work is required to extend it to
model predictive control (MPC), iterative LQR (iLQR) and differential dynamic programming (DDP),
with probabilistic solutions that need this time to be interpreted locally at each iteration step of the algorithm, see
(c) in the above figure and [9] for a first work in this direction.
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Learning structures
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Mimicking the actions of User 1 Mimicking the actions of User 2

Machine teaching
Active learning
Curriculum learning

Interaction

Emulating the goals of User 1 Emulating the goals of User 2

Exploring with feedbacks from User 1 Exploring with feedbacks from User 2

Exploring with scaffolds from User 1 Exploring with scaffolds from User 2

Learning as a . - - . . .
scaffolding process Skill acquisition by exploiting multiple learning strategies

So far, I presented structures that were taking the form of algorithms and/or representations. To reduce the amount
of required data, an additional opportunity that we can seize is that machine learning in robotics goes beyond the
standard training-set and testing-set paradigm. Indeed, we can exploit a number of interactive learning mechanisms
to acquire/generate better data on-the-spot, including active learning, machine teaching (by generating data to
train our robots), curriculum learning (by providing data of increased complexity that adapt to the learner), and
bilateral interactions that rely on several social mechanisms to transfer skills more efficiently, see the above figure
for an illustration. Indeed, skills acquisition in robotics is a scaffolding process rather than a standard
learning process. In this scaffolding metaphor, the robot needs a lot of structures at the beginning, which can then
be progressively dismantled when the robot progresses: there is a continuous evolution from full assistance to full
autonomy.

To acquire manipulation skills, humans greatly benefit from the combination of several learning modalities.
Similarly, multiple learning strategies could jointly be exploited to transfer skills to robots, while facilitating the
evaluation of the robot’s current capability at executing the task. The research direction of orchestrating different
learning modalities is still in its infancy in robotics research. However, this research direction has the potential
to improve the robustness of the acquired manipulation and assembly skills, by allowing diverse forms of constraints
to be considered (at the level of the users and the environments), as well as an improved monitoring of the robot
knowledge (by testing the acquired skills in diverse situations).

The other important advantage is that such a combination of learning strategies allows each individual learning
modality to be simplified. Indeed, skills acquisition with a single learning strategy can be unnecessarily complex, and
similarly to us, robots might not be able to acquire skills efficiently by using a single learning modality. Thus, instead
of focusing on the improvement of algorithms and models for a specific learning strategy, robotics would highly benefit
from further research to investigate the meta-learning problem of combining efficiently existing learning
methods, without defining the sequence and/or organization in advance.

In [8], we addressed this question with a first attempt at combining social and intrinsically-motivated Learning, but
further study is still required to generalize the approach to more diverse learning strategies.

User interfaces for robot programming

Portable augmented reality interface Timeline GUI for robot programming

When a robot acquires skills by user guidance, an associated challenge is to develop user-friendly interfaces for
the users to teach and monitor the acquisition of robot manipulation skills. First, this is important to let
users provide useful demonstrations of the task, by allowing them to concentrate on the skill to transfer instead of
nonessential hindering factors. This is also important to let them assess the current capability of the robot, in order
to provide demonstrations or corrections that are the most appropriate with respect to the current capability of the
robot. Thus, interfaces enabling bidirectional interactions need to be developed.

Currently, the most commonly used interfaces to teach robots new tasks in industrial applications are the teaching
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pendants. Recent torque-controlled or collaborative robot manipulators bring new programming interaction capa-
bilities, by letting operators drive the robots manually, with backdrivable motors and controllers that compensate for
the effect of gravity. The resulting interfaces allow users to move robots freely in space as if there was no motorization
in the articulations, and as if the robots had no weight. This kinesthetic teaching capability can be extended
to more elaborated forms of virtual fixtures by exploiting impedance through the torque control capability of
the robot, which provides a physical guidance capability to facilitate manipulation skill transfer, see (¢) in Figure 3.

Research in virtual reality (VR), augmented reality (AR) and mixed reality (MR), also gathered under the
name of extended reality (XR), offer promising alternative approaches to interact with robots, for both teaching
and monitoring aspects. A subset of these approaches rely on the AR capability of recent smartphones or tablets,
by displaying on the screen the video stream from the cameras on the back of the devices, and by superposing to
these images virtual robots and/or virtual guides (typically, paths, labels or coordinate systems). The device then
appears as a transparent window that users can freely move to observe a virtual scene superposed to the real scene,
by changing the angle of view or by moving closer/further away, which provides a very intuitive way of analyzing
existing movements and programming new robot movements. Such an interface allows users to inspect a taught path,
for example by replaying consecutively a robot motion on the virtual robot before executing it on the
real robot.

In [15], we developed and tested an AR interface for smartphones in the context of programming industrial (de)insertion
tasks with a NIST Task Board, a benchmark platform used to evaluate assembly performance, see above figure.

Another line of work that we currently pursue relates to the edition and visualization of costs functions in
optimal control problems (in particular, using an iLQR formulation). The approach is investigated in the context
of robot manipulation tasks, which typically require cost functions composed of different objectives organized both
in series and in parallel. Because of this organization, we study the exploitation of graphical user interfaces in
the form of timelines, with blocks and keyframes that can be (re)organized, similarly to the process of editing a
video or an animation, see above figure. Such an approach differs from the standard programming interfaces based
on drag-and-drop blocks that often present the task in a sequential manner (typically, with a top-down organization
of blocks), but that do not allow multiple processes to run in parallel. Further work is required to evaluate these two
programming paradigms and develop interfaces that could potentially gather the two types of interfaces.
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