
ar
X

iv
:1

61
0.

02
46

8v
2

 [
cs

.R
O

]
 1

5
O

ct
 2

01
8

Small Variance Asymptotics for
Non-Parametric Online Robot Learning

The International Journal of Robotics

Research

XX(X):1–19

c©The Author(s) 2016

Reprints and permission:

sagepub.co.uk/journalsPermissions.nav

DOI: 10.1177/ToBeAssigned

www.sagepub.com/

Ajay Kumar Tanwani1,2 and Sylvain Calinon1

Abstract

Small variance asymptotics is emerging as a useful technique for inference in large scale Bayesian non-parametric

mixture models. This paper analyses the online learning of robot manipulation tasks with Bayesian non-parametric

mixture models under small variance asymptotics. The analysis yields a scalable online sequence clustering (SOSC)

algorithm that is non-parametric in the number of clusters and the subspace dimension of each cluster. SOSC groups

the new datapoint in low dimensional subspaces by online inference in a non-parametric mixture of probabilistic

principal component analyzers (MPPCA) based on Dirichlet process, and captures the state transition and state

duration information online in a hidden semi-Markov model (HSMM) based on hierarchical Dirichlet process. A task-

parameterized formulation of our approach autonomously adapts the model to changing environmental situations

during manipulation. We apply the algorithm in a teleoperation setting to recognize the intention of the operator and

remotely adjust the movement of the robot using the learned model. The generative model is used to synthesize

both time-independent and time-dependent behaviours by relying on the principles of shared and autonomous control.

Experiments with the Baxter robot yield parsimonious clusters that adapt online with new demonstrations and assist

the operator in performing remote manipulation tasks.

Keywords

Learning and Adaptive Systems, Bayesian Non-Parametrics, Online Learning, Hidden Semi-Markov Model, Subspace

Clustering, Teleoperation

1 Introduction

A long standing goal in artificial intelligence is to

make robots interact with humans in everyday life tasks.

Programming by demonstration provides a promising route

to bridge this gap. When a set of T datapoints of a

manipulation task {ξt}Tt=1 with ξt ∈ R
D is provided, it is

often useful to encode these observations as a generative

model with parameters Θ (e.g., Gaussian mixture model

or hidden Markov model), providing a probability density

function P(ξt|Θ). Learning a wide range of tasks requires

extracting invariant representations from demonstrations that

can generalize in previously unseen situations. Encoding

the covariance between the task variables is important to

represent movement coordination patterns, synergies, and

action-perception couplings. Model selection and scalability

of encoding the data in higher dimensional spaces limit

the ability of these models to represent these important

motor control principles. With the influx of high-dimensional

sensory data in robotics, mixture models are useful to

compactly encode the data online so that the robots are

able to perform under varying environmental situations and

across range of different tasks. The goal is to provide an

approach to teach new manipulation tasks to robots on-

the-fly from a few human demonstrations. Moreover, non-

parametric online learning can further be combined with

other paradigms such as active learning and/or reinforcement

learning for improving the acquired skills.

Adapting statistical learning models online with large

scale streaming data is a challenging problem. Bayesian

non-parametric treatment of these models provides flexi-

bility in model selection by maintaining an appropriate

probability distribution over parameter values, P(ξt) =
∫

P(ξt|Θ)P(Θ)dΘ (Opper 1998). Although attractive for

encapsulating a priori information about the task, the compu-

tational overhead of existing sampling-based and variational

techniques for inference limit the widespread use of these

models.

Recent analysis of Bayesian non-parametric mixture

models under small variance asymptotic (SVA) limit has

led to simple deterministic models that scale well with

large size applications. For example, as the variances of the

mixture model tend to zero in a GMM, the probabilistic

model converges to its deterministic counterpart, k-

means, or to its non-parametric Dirichlet process (DP)

version, DP-Means (Kulis and Jordan 2012). SVA analysis

of other richer probabilistic models such as dependent

DP mixture models (Campbell et al. 2013), hierarchical

Dirichlet process (HDP) (Jiang et al. 2012), infinite latent

feature models (Broderick et al. 2013), Markov jump

1 Idiap Research Institute and EPFL, Switzerland.
2 University of California, Berkeley.

Corresponding author:

Ajay Kumar Tanwani

Email: ajay.tanwani@berkeley.edu

Prepared using sagej.cls [Version: 2015/06/09 v1.01]

http://arxiv.org/abs/1610.02468v2

2 The International Journal of Robotics Research XX(X)

Figure 1. SOSC model illustration with Z-shaped streaming data composed of multiple trajectory samples. The model

incrementally clusters the data in its intrinsic subspace. It tracks the transition among states and the state duration steps in a

non-parametric manner. The generative model is used to recognize and synthesize motion in performing robot manipulation tasks

(see Extension A-2).

processes (Huggins et al. 2015), infinite hidden Markov

models (Roychowdhury et al. 2013), and infinite mixture

of probabilistic principal component analysers (MPPCA)

(Wang and Zhu 2015) leads to similar algorithms that

scale well and yet retain the flexibility of non-parametric

models. This paper builds upon these advancements to unify

online variants of Bayesian non-parametric mixture models

under small variance asymptotics for robot learning from

demonstrations (Tanwani and Calinon 2016b).

1.1 Proposed Approach

We investigate the online learning of robot manipulation

tasks under SVA limit of Bayesian non-parametric mixture

models. We seek to incrementally update the parameters Θ
with each new observation ξt+1 without having to retrain

the model in a batch manner and store the demonstration

data. We present an online inference algorithm for clustering

sequential data, called scalable online sequence clustering

(SOSC). SOSC incrementally groups the streaming data

in low-dimensional subspaces by online inference in

the Dirichlet process mixture of probabilistic principal

component analysers (MPPCA) under small variance

asymptotics, while being non-parametric in the number of

clusters and the subspace dimension of each cluster. The

model tracks the transition between subspaces and the

duration of time spent in each subspace by online inference

in a hidden semi-Markov model (HSMM) based on HDP.

A task-parameterized formulation of the SOSC model is

used to adapt the model parameters to varying environmental

situations in a probabilistic manner (Tanwani and Calinon

2016a). The proposed approach uses the learning from

demonstrations paradigm to teach manipulation tasks to

robots in an online and intuitive manner. We show its

application in a teleoperation scenario where the SOSC

model is built online from the demonstrations provided by

the teleoperator to perform remote robot manipulation tasks

(see Fig. 1 for an overview of our approach).

1.2 Contributions

The purpose of this paper is to present an online unsupervised

learning framework that is fast and scalable for the encoding

of a large range of robot manipulation tasks in a non-

parametric manner. The contributions of the paper are:

• Online inference algorithms for DP-GMM, DP-

MPPCA and HDP-HSMM under small variance

asymptotics,

• Resulting non-parametric SOSC algorithm for online

learning and motion synthesis of high-dimensional

robot manipulation tasks,

• Task-parameterized formulation of the SOSC model

to systematically adapt the model parameters to

changing situations such as position/orientation/size of

the objects,

• Extension of learning from demonstration to the

context of semi-autonomous teleoperation.

Organization of the paper: We give a brief overview of

unsupervised learning approaches for robot learning in Sec.

2. Sec. 3 formalizes our learning problem of SOSC followed

by online inference algorithms of DP-MPPCA and HDP-

HSMM in Sec. 4, Sec. 5 and Sec. 6 respectively. In Sec. 7,

we present the overall SOSC algorithm and then evaluate

its performance on synthetic data and semi-autonomous

teleoperation with the Baxter robot in Sec. 8. Finally, we

conclude the paper with an outlook to our future work.

2 Background and Related Work

SOSC builds a generative model of the demonstrations

online by clustering the streaming data in low-dimensional

Prepared using sagej.cls

Tanwani et al. 3

subspaces and capturing the state transition and state dura-

tion information in a non-parametric manner. Incremen-

tal online learning poses a unique challenge to the exist-

ing robot learning methods with high-dimensional data,

model selection, real-time adaptation and adequate accu-

racy/generalization after observing a fewer number of train-

ing samples. An overview of robot learning from demonstra-

tion methods can be found in (Schaal et al. 2003; Argall et al.

2009; Billard et al. 2016).

Gaussian mixture models (GMMs) are widely used to

encode local trends in the demonstrations for unsupervised

learning problems. The probability density function P of a

GMM with K mixture components is represented as

P(ξt|ΘGMM) =

K
∑

i=1

πi N (ξt|µi,Σi), (1)

where N (µi,Σi) is the multivariate Gaussian distribution

with parameters ΘGMM containing prior πi ∈ R, mean

µi ∈ R
D, and covariance matrix Σi ∈ R

D×D. Hidden

Markov models (HMMs) encapsulate the spatio-temporal

information by augmenting a GMM with latent states that

sequentially evolve over time in the demonstrations. The

parameter set now additionally contains the transition matrix

and the initial state distribution. HMMs are widely used

for time series/sequence analysis in speech recognition,

machine translation, DNA sequencing, robotics and many

other fields (Rabiner 1989). HMMs have been typically

used for recognition and generation of movement skills in

robotics (Asfour et al. 2008; Calinon et al. 2010; Lee et al.

2010; Vakanski et al. 2012). A number of variants of HMMs

have been proposed to address some of its shortcomings,

including: 1) how to bias learning towards models with

longer self-dwelling states, 2) how to robustly estimate the

parameters with high-dimensional noisy data, 3) how to

adapt the model with newly observed data, and 4) how to

estimate the number of states that the model should possess.

Variants based on Hidden semi-Markov models

(HSMMs) replace the self-transition probabilities of staying

in a state with an explicit model of state duration (Yu 2010).

This helps the generative system to adequately represent

movements and behaviors with longer state dwell times for

learning robot manipulation tasks (Tanwani and Calinon

2016a).

Subspace clustering methods perform segmentation and

dimensionality reduction simultaneously to encode human

demonstrations with piecewise planar segments (Schaal et al.

2007). Statistical subspace clustering methods impose a

parsimonious structure on the covariance matrix to reduce

the number of parameters that can be robustly estimated

(Bouveyron and Brunet 2014). For example, a mixture of

factor analyzers (MFA) performs subspace clustering by

assuming the structure of the covariance to be of the form

(McLachlan et al. 2003)

Σi = Λ
d
iΛ

d⊤

i +Ψi, (2)

where Λ
d
i ∈ R

D×d is the factor loadings matrix with d<
D for parsimonious representation of the data, and Ψi ∈
R

D×D is the diagonal noise matrix. Other extensions such

as sharing the parameters of the covariance in a semi-tied

manner aligns the mixture components for robust encoding

of the demonstrations (Tanwani and Calinon 2016a).

Online/Incremental learning methods update the

model parameters with streaming data, without the need

to re-train the model in a batch manner (Neal and Hinton

1999; Song and Wang 2005). Non-parametric regression

methods have been commonly used in this context such as

locally weighted projection regression (Vijayakumar et al.

2005), sparse online Gaussian process regression

(Gijsberts and Metta 2013) and their fusion with local

Gaussian process regression (Nguyen-Tuong et al. 2009),

see Stulp and Sigaud (2015) for a review. Kulic et al.

(2008) used HMMs to incrementally group whole-body

motions based on their relative distance in HMM space.

Lee and Ott (2010) presented an iterative motion primitive

refinement approach with HMMs. Kronander et al. (2015)

locally reshaped an existing dynamical system with new

demonstrations in an incremental manner while preserving

its stability. Hoyos et al. (2016) experimented with different

strategies to incrementally add demonstrations to a task-

parametrized GMM. Bruno et al. (2016) learned autonomous

behaviours for a flexible surgical robot by online clustering

with DP-means.

Bayesian non-parametric treatment of HMMs/HSMMs

automates the number of states selection procedure by

Bayesian inference in a model with infinite number

of states (Beal et al. 2002; Johnson and Willsky 2013).

Niekum et al. (2012) used the Beta Process Autoregressive

HMM for learning from unstructured demonstrations.

Krishnan et al. (2015) defined a hierarchical non-parametric

Bayesian model to identify the transition structure between

states with a linear dynamical system. Figueroa et al.

used the transformation invariant covariance matrix for

encoding tasks with a Bayesian non-parametric HMM

Figueroa and Billard (2017). Inferring the maximum a

posteriori distribution of the parameters in non-parametric

models, however, is often difficult. Markov Chain Monte

Carlo (MCMC) sampling or variational methods are required,

which are difficult to implement and often do not scale

with the size of the data. Small variance asymptotic analysis

of these methods provide a trade-off by yielding simple

and scalable hard clustering non-parametric algorithms

(Kulis and Jordan 2012). Other prominent applications

of SVA include feature learning (Broderick et al. 2013),

dimensionality reduction (Wang and Zhu 2015) and time-

series analysis (Roychowdhury et al. 2013).

This paper builds upon these advancements in small

variance asymptotic analysis of Bayesian non-parametric

mixture models. We present a non-parametric online unsu-

pervised framework for robot learning from demonstrations,

which scales well with sequential high-dimensional data. We

formulate online inference algorithms of HDP-HSMM and

DP-MPPCA under small variance asymptotics in Sec. 6 and

Sec. 5 respectively. We then present a task-parameterized

generative model online for encoding and motion synthesis

of robot manipulation tasks in Sec. 7.

3 Problem Setup

Let us consider the streaming observation sequence

{ξ1, . . . , ξt} with ξt ∈ R
D obtained at current time step t

Prepared using sagej.cls

4 The International Journal of Robotics Research XX(X)

Figure 2. SOSC representation using non-parametric HSMM

with MPPCA as observation distribution given the streaming

data ξ
1
, ξ

2
, . . . ξt.

while demonstrating a manipulation task. The corresponding

hidden state sequence {z1, . . . , zt} with zt ∈ {1, . . . ,K}
belongs to the discrete set of K cluster indices at time t,
and the observation ξt is drawn from a multivariate Gaussian

with mixture coefficients πt,i ∈ R, mean µt,i ∈ R
D and

covariance Σt,i ∈ R
D×D at time t.

We seek to update the parameters online upon observation

of a new datapoint ξt+1, such that the datapoint can

be discarded afterwards. Small variance asymptotic

(SVA) analysis implies that the covariance matrix Σt,i

of all the Gaussians reduces to the isotropic noise

σ2, i.e., Σt,i ≈ limσ2→0 σ
2I (Kulis and Jordan 2012;

Broderick et al. 2013; Roychowdhury et al. 2013). Note

that if the covariance matrices Σt,i of all the mixture

components in a GMM are set equal to the isotropic

matrix σ2I, the expected value of the complete log-

likelihood of the data a.k.a. the auxiliary function,

Q(ΘGMM,Θ
old

GMM) = E
{

logP(ξt, zt|ΘGMM) | ξt,Θ old
GMM

}

,

takes the form (Dempster et al. 1977)

K
∑

i=1

P(i|ξt,Θ old
GMM)

(

log πt,i −
D

2
log 2πσ2 − ‖ξt − µt,i‖22

2σ2

)

.

(3)

Applying the small variance asymptotic limit to the

auxiliary function with limσ2→0 Q(ΘGMM,Θ old
GMM), the last

term
‖ξ

t
−µ

t,i
‖2
2

2σ2 dominates the objective function and

the maximum likelihood estimate reduces to the k-means

problem,∗ i.e.,

maxQ(ΘGMM,Θ
old

GMM) = argmin
zt,µt

‖ξt − µt,zt
‖22. (4)

By restricting the covariance matrix to an

isotropic/spherical noise, the number of parameters grows up

to a constant with the dimension of datapoint D. Although

attractive for scalability and parsimonious structure, such

decoupling cannot encode the important motor control

principles of coordination, synergies and action-perception

couplings. Consequently, we further assume that the ith

output Gaussian groups the observation ξt in its intrinsic

low-dimensional affine subspace of dimension dt,i at time t

with projection matrix Λ
dt,i

t,i ∈ R
D×dt,i , such that dt,i < D

and Σt,i = Λ
dt,i

t,i Λ
dt,i

⊤

t,i + σ2I. Under this assumption, we

apply the small variance asymptotic limit on the remaining

(D − dt,i) dimensions to encode the most important

coordination patterns while being parsimonious in the

number of parameters.

In order to encode the temporal information among the

mixture components, let at ∈ R
K×K with at,i,j , P (zt =

j|zt−1 = i) denote the transition probability of moving from

state i at time t− 1 to state j at time t. The parameters

{µS
t,i,Σ

S
t,i} represent the mean and the standard deviation

of staying s consecutive time steps in state i estimated

by a Gaussian N (s|µS
t,i,Σ

S
t,i). The hidden state follows

a multinomial distribution with zt ∼ Mult(πzt−1
) where

πzt−1
∈ R

K is the next state transition distribution over

state zt−1, and the observation ξt is drawn from the output

distribution of state j, described by a multivariate Gaussian

with parameters {µt,j ,Σt,j} (see Fig. 2 for graphical

representation of the SOSC problem). The K Gaussian

components constitute a GMM augmented with the state

transition and the state duration model to capture the

sequential pattern in the demonstrations (see Appx. B for the

notations used in the paper).

The overall parameter set of SOSC is represented by

Θt,SOSC =
{

µt,i,Σt,i, {at,i,m}Km=1, µ
S
t,i,Σ

S
t,i

}K

i=1
.† We are

interested in updating the parameter set Θt,SOSC online upon

observation of a new datapoint ξt+1, such that the datapoint

can be discarded afterwards. We first apply the Bayesian

non-parametric treatment to the underlying mixture models

and formulate online inference algorithms for DP-GMM, DP-

MPPCA and HDP-HSMM under small variance asymptotics

in Sec. 4, 5, and 6. This results in a non-parametric online

approach to robot learning from demonstrations presented in

Sec. 7.

4 SVA of DP-GMM

In this section, we review the fundamentals of Bayesian non-

parametric extension of GMM under small variance asymp-

totics using the parameter subset ΘGMM = {πi,µi,Σi}Ki=1

and present a simple approach for online update of the

parameters.

4.1 Dirichlet Process GMM (DP-GMM)

Consider a Bayesian non-parametric GMM with Chinese

Restaurant Process (CRP) prior over the cluster assignment

with α as concentration parameter, zt ∼ CRP(α), and non-

informative prior over cluster means with ̺2 as small

constant, µi ∼ N (0, ̺2ID). The likelihood function for a

set of datapoints is evaluated as

P(ξt|z,µ) =
K
∏

i=1

T
∏

t=1

N (ξt|µi, σ
2I). (5)

∗SVA analysis of the Bayesian non-parametric GMM leads to the DP-means

algorithm Kulis and Jordan (2012). Similarly, SVA analysis of the HMM

yields the segmental k-means problem Roychowdhury et al. (2013).
†With a slight abuse of notation, we represent the parameters with an added

subscript t for online learning. For example, Θt,h denotes the parameters of

Θh at time t.

Prepared using sagej.cls

Tanwani et al. 5

The parameters z and µ are obtained by maximizing the

posterior distribution

argmax
K,z,u

P(z,µ|ξt) ∝ argmin
K,z,u

− logP(ξt, z,µ). (6)

Computing the joint posterior distribution and setting α =
exp(− λ

2σ2)

P(ξt, z,µ) = P(ξt|z,µ) P(z) P(µ)

=

K
∏

i=1

T
∏

t=1

N (ξt|µi, σ
2I) CRP(exp(− λ

2σ2
)) N (0, ̺2ID).

(7)

Taking the log of the joint posterior distribution and applying

the SVA limit limσ2→0 yields the DP-means algorithm

(Kulis and Jordan 2012). The limit pushes the posterior mass

on one of the clusters leading to a deterministic assignment

based on the distance of the datapoint to the nearest cluster.

The resulting loss function L(z,µ) to optimize is given as

argmin
K,z,u

lim
σ2→0

− logP(ξt, z,µ) ≈ argmin
K,z,u

L(z,µ)

= argmin
K,z,u

K
∑

i=1

T
∑

t=1

‖ξt − µi‖22 + λK. (8)

The algorithm is similar to k-means algorithm except that it

is non-parametric in the number of clusters. The algorithm

iteratively assigns the datapoint(s) to its nearest cluster

center, and if any of the datapoints are farther away from

the cluster center than a certain threshold λ, a new cluster

is created with the distant datapoints and a penalty λ added

to the loss function. The algorithm converges to a local

minimum just like the k-means algorithm.

4.2 Online Inference in DP-GMM

In the online setting, we want to update the parameters

Θt,GMM with each new observation ξt+1. The update consists

of the cluster assignment step and incremental update of

parameters step.

4.2.1 Cluster Assignment zt+1: In the online setting, the

cluster assignment zt+1 for new datapoint ξt+1 is based on

the distance of the datapoint to the existing cluster means. If

the minimum distance is greater than a certain threshold λ,

a new cluster is initialized with that datapoint; otherwise the

assigned cluster prior, mean and the corresponding number

of datapoints wt+1,zt+1
are incrementally updated. We can

thus write,

zt+1 = argmin
j=1:K+1

{

‖ξt+1 − µt,j‖22, if j ≤ K

λ, otherwise.
(9)

4.2.2 Parameters Update Θt+1,GMM: Given the cluster

assignment zt+1 = i and the covariance matrix set to Σt,i =
σ2I , the parameters are updated with

πt+1,i =
1

t+ 1

(

tπt,i + 1
)

,

µt+1,i =
1

wt,i + 1

(

wt,iµt,i + ξt+1

)

, (10)

where wt,i is the weight assigned to the i-th cluster parameter

set at time t to control the effect of the parameter update with

the new datapoint at time t+ 1 relative to the updates seen

till time t (see next section for updates of wt+1,i).

Loss function L(zt+1,µt+1,zt+1
): The loss function

optimized at time step t+ 1 is given as

L(zt+1,µt+1,zt+1
) = λK + ‖ξt+1 − µt+1,zt+1

‖22
≤ L(zt+1,µt,zt+1

). (11)

It can be seen that direct application of small variance asymp-

totic limit with isotropic Gaussians severely limits the model

from encoding important coordination patterns/variance in

the streaming data. We next apply the limit to discard only

the redundant dimensions in a non-parametric manner and

project the new datapoint in a latent subspace by online

inference in a Dirichlet process mixture of probabilistic

principal component analyzers.

5 Online DP-MPPCA

In this section, we consider the problem formulation

with a mixture of probabilistic principal component

analyzers (MPPCA) using the parameter subset ΘMPPCA =
{µi,Λ

d
i , di}Ki=1. We consider its non-parametric extension

with the Dirichlet process under small variance asymptotics

and present an algorithm for online inference.

5.1 Mixture of Probabilistic Principal

Component Analyzers (MPPCA)

The basic idea of MPPCA is to reduce the dimensions of

the data while keeping the observed covariance structure.

The generative model of MPPCA approximates the datapoint

ξt as a convex combination of K subspace clusters

(Tipping and Bishop 1999)

P(ξt|θs) =
K
∑

i=1

P(zt = i) N (ξt|µi,Λ
d
iΛ

d⊤

i + σ2
i I), (12)

where P(zt = i) is the cluster prior, Λ
d
i ∈ R

D×d is the

projection matrix with d < D and d = di, σ2
i I is the

isotropic noise coefficient for the i-th cluster, and the

covariance structure is of the form Σi = Λ
d
iΛ

d⊤

i + σ2
i I .‡

The model assumes that ξt, conditioned on zt = i, is

generated by an affine transformation of d-dimensional latent

variable ut ∈ R
d with noise term ǫ ∈ R

D such that

ξt = Λ
d
iut + µi + ǫ, ut ∼ N (0, Id), ǫ ∼ N (0, σ2

i I).
(13)

The model parameters of MPPCA are usually learned

using an Expectation-Maximization (EM) procedure

(Tipping and Bishop 1999). But in this case, both the

number of clusters K and the subspace dimension of each

cluster d need to be specified a priori, which is not always

trivial in several domains.

‡Note that MPPCA is closely related to MFA, and uses isotropic noise

matrix instead of the diagonal noise matrix used in MFA (see Eq. (2)).

Prepared using sagej.cls

6 The International Journal of Robotics Research XX(X)

5.2 Dirichlet Process MPPCA (DP-MPPCA)

Bayesian non-parametric extension of MPPCA alleviates the

problem of model selection by defining prior distributions

over the number of clusters K and the subspace dimension

of each cluster di (Zhang et al. 2004; Chen et al. 2010;

Wang and Zhu 2015). Similar to DP-GMM, a CRP prior

is placed over the cluster assignment zt ∼ CRP(α), along

with a hierarchical prior over the projection matrix Λ
di

i

and an exponential prior on the subspace rank di ∼ rdi

where r ∈ (0, 1). Applying small variance asymptotics on

the resulting partially collapsed Gibbs sampler leads to an

efficient deterministic algorithm for subspace clustering with

an infinite MPPCA (Wang and Zhu 2015). The algorithm

iteratively converges by minimizing the loss function

L(z,d,µ,U) = λK + λ1

K
∑

i=1

di +

T
∑

t=1

dist(ξt,µzt
,Ud

zt
)2,

(14)

where dist(ξt,µzt
,Ud

zt
)2 represents the distance of the

datapoint ξt to the subspace of cluster zt defined by mean

µzt
and unit eigenvectors of the covariance matrix Ud

zt
(see

Eq. (15) below), and λ, λ1 represent the penalty terms for

the number of clusters and the subspace dimension of each

cluster respectively. The algorithm optimizes the number of

clusters and the subspace dimension of each cluster while

minimizing the distance of the datapoints to the respective

subspaces of each cluster. Note that the clustering objective is

similar to the DP-means algorithm except that the distance to

the cluster means is replaced by the distance to the subspace

of the cluster and an added penalty is placed on choosing

clusters with more subspace dimensions. In other words, DP-

GMM is the limiting case of DP-MPPCA with very large

penalty on the subspace dimension.

5.3 Online Inference in DP-MPPCA

In the online setting, we seek to incrementally update the

parameters Θt,MPPCA (ΘMPPCA at time t) with the new

observation ξt+1 without having to retrain the model in

a batch manner and store the demonstration data. The

parameters are updated in an online manner in two steps: the

cluster assignment step followed by the parameter updates

step.

5.3.1 Cluster Assignment zt+1: The cluster assignment

zt+1 of ξt+1 in the online case follows the same principle

as in Eq. (9), except the distance is now computed from the

subspace of a cluster dist(ξt+1,µt,i,U
dt,i

t,i)2, defined using

the difference between the mean-centered datapoint and

the mean-centered datapoint projected upon the subspace

U
dt,i

t,i ∈ R
D×dt,i spanned by the dt,i unit eigenvectors of the

covariance matrix, i.e.,

dist(ξt+1,µt,i,U
dt,i

t,i) =
∥

∥

∥
(ξt+1 − µt,i)− ρiU

dt,i

t,i U
dt,i

⊤

t,i (ξt+1 − µt,i)
∥

∥

∥

2
, (15)

where

ρi = exp

(

−‖ξt+1 − µt,i‖22
bm

)

weighs the projected mean-centered datapoint according to

the distance of the datapoint from the cluster center (0 <

ρi ≤ 1). Its effect is controlled by the bandwidth parameter

bm. If bm is large, then the far away clusters have a greater

influence; otherwise nearby clusters are favored. Note that

ρj assigns more weight to the projected mean-centered

datapoint for the nearby clusters than the distant clusters to

limit the size of the cluster/subspace. Note that our subspace

distance formulation is different from (Wang and Zhu 2015)

as we weigh the subspace of the nearby clusters more than

the distant clusters. This allows us to avoid clustering all the

datapoints in the same subspace (near or far) together. The

cluster assignment is deterministically updated using

zt+1 = argmin
i=1:K+1

{

dist(ξt+1,µt,i,U
dt,i

t,i)2, if i ≤ K

λ, otherwise.

(16)

5.3.2 Parameter Updates Θt+1,MPPCA: Given the cluster

assignment zt+1 = i at time t+ 1, the prior and mean of the

assigned cluster are updated in the same way as DP-GMM

(see Eq. (10)). Depending upon the nature of the streaming

data, wt+1,i can be updated as follows§:

• For stationary online learning problems where the data

is sampled from some fixed distribution, we update the

weight wt+1,i linearly with the number of instances

belonging to that cluster, namely

wt+1,i = wt,i + 1, w0,i = 1. (17)

• For non-stationary online learning problems where the

distribution of streaming data varies over time, we

update the weight vector based on the eligibility trace

that takes into account the temporary occurrence of

visiting a particular cluster.¶ The trace indicates how

much a cluster is eligible for undergoing changes with

the new parameter update. The trace is updated such

that the weights of all the clusters are decreased by the

discount factor ζ ∈ (0, 1) and the weight of the visited

cluster is incremented, i.e., the more often a state is

visited, the higher is the eligibility weight of all the

previous updates relative to the new parameter update,

namely

wt+1,i =

{

ζwt,i + 1, if i = zt+1

ζwt,i, if i 6= zt+1.
(18)

• For non-stationary problems where learning is

continuous and may not depend upon the number of

datapoints, the weight vector is kept constant wt+1,i =
wt,i = w∗ at all time steps as a step-size parameter.

The covariance matrix could then be updated online as

Σ̄t+1,i =
wt,i

wt,i + 1
Σt,i+

wt,i

(wt,i + 1)2
(ξt+1 − µt+1,i)(ξt+1 − µt+1,i)

⊤. (19)

§Note that when the transition dynamics and the observations are modeled

with a linear Gaussian model, the parameter updates for the mean and the

covariance can be updated in closed form with the use of a Kalman filter.
¶Eligibility traces are commonly used in reinforcement learning to evaluate

the state for undergoing learning changes in temporal-difference learning

(Sutton and Barto 1998).

Prepared using sagej.cls

Tanwani et al. 7

However, updating the covariance matrix online in D-

dimensional space can be prohibitively expensive for even

moderate size problems. To update the covariance matrix in

its intrinsic lower dimension, similarly to (Bellas et al. 2013),

we compute gt+1,i ∈ R
di as the projection of datapoint ξt+1

onto the existing set of basis vectors of U
dt,i

t,i . Note that the

cardinality of basis vectors is different for each covariance

matrix. If the datapoint belongs to the subspace of U
dt,i

t,i , the

retro-projection of the datapoint in its original space, as given

by the residual vector pt+1,i ∈ R
D , would be a zero vector;

otherwise the residual vector belongs to the null space of

U
dt,i

t,i , and its unit vector p̃t+1,i needs to be added to the

existing set of basis vectors, i.e.,

gt+1,i = U
dt,i

t,i

⊤

(ξt+1 − µt,i),

pt+1,i = (ξt+1 − µt,i)−U
dt,i

t,i gt+1,i,

p̃t+1,i =

{ p
t+1,i

‖p
t+1,i

‖
2

, if ‖pt+1,i‖2 > 0

0D, otherwise.

The new set of basis vectors augmented with the unit

residual vector is represented as

U
dt,i

t+1,i = [U
dt,i

t,i , p̃t+1,i] Rt+1,i, (20)

where Rt+1,i ∈ R
(dt,i+1)×(dt,i+1) is the rotation matrix to

incrementally update the augmented basis vectors. Rt+1,i is

obtained by simplifying the eigendecomposition problem

Σ̄t+1,i = U
dt,i

t+1,i Σ
(diag)
t+1,i U

dt,i

t+1,i

⊤

. (21)

Substituting the value of Σ̄t+1,i from Eq. (19) and U
dt,i

t+1,i

from (20) yields the reduced eigendecomposition problem of

size (dt,i + 1)× (dt,i + 1) with

wt,i

wt,i + 1

[

Σ
(diag)
t,i 0dt,i

0
⊤

dt,i
0

]

+
wt,i

(wt,i + 1)2

[

gt+1,i g
⊤

t+1,i νigt+1,i

νig
⊤

t+1,i ν2i

]

= Rt+1,i Σ
(diag)
t+1,i R⊤

t+1,i, (22)

where νi = p̃⊤

t+1,i(ξt+1 − µt+1,i). Solving for Rt+1,i and

substituting it in Eq. (20) gives the required updates

of the basis vectors in a computationally and memory

efficient manner. The subspace dimension of the i-th mixture

component is updated by keeping an estimate of the average

distance vector ēt,i ∈ R
D whose k-th element represents

the mean distance of the datapoints to the (k − 1) subspace

basis vectors of Uk
t,i for the i-th cluster. Let us denote δi

as the vector measuring the distance of the datapoint ξt+1

to each of the subspaces of Uk
t,i for the i-th cluster where

k = {0 . . . (dt,i + 1)}, i.e.,

δi =







dist(ξt+1,µt+1,i,U
0
t+1,i)

2

...

dist(ξt+1,µt+1,i,U
dt,i+1
t+1,i)2






, (23)

where dist(ξt+1,µt+1,i,U
0
t+1,i)

2 is the distance to the

cluster subspace with 0 dimension (the cluster center point),

dist(ξt+1,µt+1,i,U
1
t+1,i)

2 is the distance to the cluster

Figure 3. Non-parametric online clustering of Z-shaped

streaming data under small variance asymptotics with: (top)

online DP-GMM, (bottom) online DP-MPPCA.

subspace with 1 dimension (the line), and so on. The average

distance vector ēt+1,i and the subspace dimension dt+1,i are

incrementally updated as

ēt+1,i =
1

wt,i + 1

(

wt,iēt,i + δi

)

, (24)

dt+1,i = argmin
d=0:D−1

{

λ1d+ ēt+1,i

}

. (25)

Given the updated set of basis vectors, the projection

matrix and the covariance matrix are updated as

Λ
dt+1,i

t+1,i = U
dt+1,i

t+1,i

√

Σ
(diag)
t+1,i , (26)

Σt+1,i = Λ
dt+1,i

t+1,i Λ
dt+1,i

t+1,i

⊤

+ σ2I. (27)

Loss function L(zt+1, dt+1,zt+1
,µt+1,zt+1

,U
dt+1,zt+1

t+1,zt+1
):

The loss function optimized at time step t+ 1 is

L(zt+1, dt+1,zt+1
,µt+1,zt+1

,U
dt+1,zt+1

t+1,zt+1
) = λK+

λ1dt+1,zt+1
+ dist(ξt+1,µt+1,zt+1

,U
dt+1,zt+1

t+1,zt+1
)2

≤ L(zt+1, dt,zt+1
,µt,zt+1

,U
dt,zt+1

t,zt+1
).

The loss function provides an intuitive trade-off between

the fitness term dist(ξt+1,µt+1,zt+1
,U

dt+1,zt+1

t+1,zt+1
)2 and the

model selection parameters K and dk . Increasing the number

of clusters or the subspace dimension of the assigned cluster

decreases the distance of the datapoint to the assigned

subspace at the cost of penalty terms λ and λ1. Parameters of

the assigned cluster are updated in a greedy manner such that

the loss function is guaranteed to decrease at the current time

step. In case a new cluster is assigned to the datapoint, the

loss function at time t is evaluated with the cluster having

the lowest cost among the existing set of clusters. Note

that setting dt,i = 0 by choosing λ1 ≫ 0 gives the same

loss function and objective function as the online DP-GMM

algorithm with isotropic Gaussians.

Prepared using sagej.cls

8 The International Journal of Robotics Research XX(X)

To illustrate the difference of encoding between online DP-

means and online DP-MPPCA, we evaluate the performance

of the algorithms on a Z-shaped 3-dimensional stream of

datapoints with penalty parameters {λ = 35, σ2 = 100} for

online DP-GMM, and {λ = 14, λ1 = 2, σ2 = 1, bm = 1×
104} for online DP-MPPCA. Fig. 3 shows that online DP-

GMM under small variance asymptotics fails to represent

the variance in the demonstrations with d = 0, whereas the

number of clusters and the subspace dimension adequately

evolves for online DP-MPPCA to model the underlying

distribution.

6 Online HDP-HSMM

In this section, we first briefly describe HSMM and its

Bayesian non-parametric extension, and then present our

incremental formulation to estimate the parameters of an infi-

nite HSMM, ΘHSMM =
{

µi,Σi, {ai,m}Km=1, µ
S
i ,Σ

S
i

}K

i=1
,

where the output distribution of i-th state is represented

by a parsimonious multivariate Gaussian N (µi,Λ
di

i Λ
di

i

⊤

+
σ2I). Compared to the previous section, transition probabil-

ities and an explicit state duration model for each state will

be introduced as additional parameters.

6.1 Hidden Semi-Markov Model (HSMM)

A hidden Markov model describes a latent Markov process

with transitions between a finite number of states at discrete

times, and emission of an observation in each state. Spatio-

temporal encoding with HMMs can handle movements

with variable durations, recurring patterns, options in the

movement, or partial/unaligned demonstrations. Learning in

HMMs usually requires experimenting with the structure

of transitions and the number of latent states. For example,

left-to-right HMMs preclude all the states previously

visited by setting constraints to the corresponding transition

probabilities to be zero. HMMs implicitly assume that the

duration of staying in a state follows a geometric distribution.

This assumption is often limiting, especially for the modeling

of sequences with long state dwell-times (Rabiner 1989).

A hidden semi-Markov model (HSMM) relaxes the

Markovian structure of state transitions by relying not only

upon the current state but also on the duration/elapsed time

in the current state. An explicit duration HSMM sets the

self-transition probabilities to zero and explicitly models

the state duration with a parametric distribution (Yu 2010)

(for simplicity, we use a Gaussian distribution to model

the state duration, but other distributions may better model

durations). Note that the HSMM extracts the spatio-temporal

regularities of the demonstrations. Time is only included as

a relative duration between two consecutive states in this

representation. On the two sides of the spectrum, a flat

duration distribution corresponds to an atemporal state, while

a peak distribution corresponds to a finite-state machine

with an automatic switching to the next state after a given

number of time steps. The HSMM models the state duration

in-between these two extremes. Moreover, situations where

demonstrations are performed with large temporal variations

but similar state variations (such as very fast and very slow

demonstrations), we recommend using a GMM to model the

state duration, as a single Gaussian would yield a high bias

and high variance of the duration model in such a situation.

6.2 Hierarchical Dirichlet Process Hidden

Semi-Markov Model (HDP-HSMM)

Specifying the number of latent states in an HMM/HSMM

is often difficult. Model selection methods such as cross-

validation or Bayesian Information Criterion (BIC) are

typically used to determine the number of states. Bayesian

non-parametric approaches comprising of HDPs provide a

principled model selection procedure by Bayesian inference

in an HMM/HSMM with infinite number of states. Interested

readers can find details of DPs and HDPs for specifying

an infinite set of conditional transition distribution priors in

Teh et al. (2006).

HDP-HMM (Beal et al. 2002; Van Gael et al. 2008) is an

infinite state Bayesian non-parametric generalization of the

HMM with HDP prior on the transition distribution. In this

model, the state transition distribution for each state follows

a Dirichlet process Gi ∼ DP(α,G0) with concentration

parameter α and shared base distribution G0, such that

G0 is the global Dirichlet process G0 ∼ DP(γ,H) with

concentration parameter γ and base distribution H . The

top level DP enables sharing of the existing states with a

new state created under a bottom level DP for each state

and encourages visiting of the same consistent set of states

in the sequence. Let β denote the weights of G0 in its

stick-breaking construction (Sethuraman 1994), then the non-

parametric approach takes the form

β|γ ∼ GEM(γ),

πi|α,β ∼ DP(α,β),

{µi,Λ
di

i , di} ∼ H,

zt ∼ Mult(πzt−1
),

ξt|zt ∼ N (µi,Λ
di

i Λ
di

i

⊤

+ σ2I),

where GEM represents the Griffiths, Engen and McCloskey

distribution (Pitman 2002). Without loss of generality, we

have used here the parsimonious representation of a Gaussian

for the output distribution of a state.

Johnson and Willsky (2013) presented an extension of

HDP-HMM to HDP-HSMM by explicitly drawing the state

duration distribution parameters and precluding the self-

transitions. Other extensions such as sticky HDP-HMM

(Fox et al. 2008) add a self-transition bias parameter to the

DP of each state to prolong the state-dwell times. We take a

simpler approach to explicitly encode the state duration by

setting the self-transition probabilities to zero and estimating

the parameters {µS
i ,Σ

S
i } empirically from the hidden state

sequence {z1, . . . , zT }.

Note that learning the model in this Bayesian non-

parametric setting involves computing the posterior distri-

bution over the latent state, the output state distribution

and the transition distribution parameters. The problem is

more challenging than the maximum likelihood parameter

estimation of HMMs and requires MCMC sampling or

variational inference techniques to compute the posterior

distribution. Performing small-variance asymptotics of the

joint likelihood of HDP-HMM, on the other hand, yields

the maximum a posteriori estimates of the parameters that

Prepared using sagej.cls

Tanwani et al. 9

iteratively minimize the loss function‖

L(z,d,µ,U ,a) =
T
∑

t=1

dist(ξt,µzt
,Udi

zt
)2 + λ(K − 1)

+ λ1

K
∑

i=1

di − λ2

T−1
∑

t=1

log(azt,zt+1
) + λ3

K
∑

i=1

(τi − 1),

where λ2, λ3 > 0 are the additional penalty terms respon-

sible for prolonging the state duration estimates compared

to the loss function in Eq. (14). The λ2 term favors the

transitions to states with higher transition probability (states

which have been visited more often before), λ3 penalizes for

transition to unvisited states with τi denoting the number of

distinct transitions out of state i, and λ, λ1 are the penalty

terms for increasing the number of states and the subspace

dimension of each output state distribution.

6.3 Online Inference in HDP-HSMM

For the online setting, we denote the parameter set ΘHSMM

at time t as Θt,HSMM. Given the observation ξt+1, we now

present the cluster assignment and the parameter update steps

for the online incremental version of HDP-HSMM.

6.3.1 Cluster Assignment zt+1: The datapoint ξt+1 is

assigned to cluster zt+1 based on the rule

zt+1 = argmin
i=1:K+1











q1,i, if {at,zt,i > 0, i ≤ K}
q2,i, if {at,zt,i = 0, i ≤ K}
q3,i, otherwise,

q1,i = dist(ξt+1,µt,i,U
di

t,i)
2 − λ2log at,zt,i, (28)

q2,i = dist(ξt+1,µt,i,U
di

t,i)
2 − λ2log

1
∑K

k=1ct,zt,k+1
+λ3,

(29)

q3,i = λ− λ2log
1

∑K

k=1 ct,zt,k + 1
+ λ3, (30)

where ct,i,j is an auxiliary transition variable that counts

the number of visits from state i to state j till time t. The

assignment procedure evaluates the cost on two main criteria:

1) distance of the datapoint to the existing cluster subspaces

given by dist(ξt+1,µt,i,U
di

t,i), and 2) transition probability

of moving from the current state to the other state at,zt,i.
The procedure favors the next state to be one whose distance

from the subspace of a cluster is low and whose transition

probability is high, as seen in Eq. (28). If the probability of

transitioning to a given state is zero, an additional penalty of

λ3 is added along with a pseudo transition count to that state
1∑

K
k=1

ct,zt,k+1
. Finally, if the cost of transitioning to a new

state at subspace distance λ in Eq. (30) is lower than the cost

evaluated in Eq. (28) and Eq. (29), a new cluster is created

with the datapoint and default parameters.

6.3.2 Parameter Updates Θt+1,HSMM: Given the cluster

assignment zt+1 = i, we first estimate the parameters

µt+1,i,U
dt,i

t+1,i, dt+1,i, and Σt+1,i following the update rules

in Eqs (10), (20), (25) and (27), respectively. We update

the transition probabilities via the auxiliary transition count

matrix with

ct+1,zt,zt+1
= ct,zt,zt+1

+ 1, (31)

at+1,zt,zt+1
= ct+1,zt,zt+1

/

K
∑

k=1

ct+1,zt,k. (32)

To update the state duration probabilities, we keep a count

of the duration steps st in which the cluster assignment is the

same, i.e.,

st+1 =

{

st + 1, if zt+1 = zt,

0, otherwise.
(33)

Let us denote nt,zt as the total number of transitions to

other states from the state zt till time t. When the subsequent

cluster assignment is different, zt+1 6= zt, the duration count

is reset to zero, st+1 = 0, the transition count to other states

is incremented, nt+1,zt = nt,zt + 1, and the duration model

parameters {µS
t+1,zt ,Σ

S
t+1,zt} are updated as

µS
t+1,zt = µS

t,zt
+

(st − µS
t,zt

)

nt,zt + 1
, (34)

et+1,zt = et,zt + (st − µS
t,zt

)(st − µS
t+1,zt), (35)

ΣS
t+1,zt =

et+1,zt

nt,zt

. (36)

Loss function L(zt+1, dt+1,zt+1
,µt+1,zt+1

,U
dt+1,zt+1

t+1,zt+1
,

at+1,zt,zt+1
): The parameters updated at time step t+ 1

minimize the loss function

L(zt+1, dt+1,zt+1
,µt+1,zt+1

,U
dt+1,zt+1

t+1,zt+1
, at+1,zt,zt+1

) =

λ(K − 1) + λ1dt+1,zt+1
− λ2 log(azt,zt+1

) + λ3 τzt+1

+ dist(ξt+1,µt+1,zt+1
,U

dt+1,zt+1

t+1,zt+1
)2

≤ L(zt+1, dt,zt+1
,µt,zt+1

,U
dt,zt+1

t,zt+1
, at,zt,zt+1

).

A decrease of the loss function ensures that the assigned

cluster parameters are updated in an optimal manner. In case

a new cluster is assigned to the datapoint, the loss function

at time t is evaluated with the cluster having the lowest cost

among the existing set of clusters.

Remark: Note that λ2 encourages visiting the more

influential states, and λ3 restricts the creation of new states.

We do not explicitly penalize the deviation from the state

duration distribution in the cluster assignment step or the

loss function, and only re-estimate the parameters of the state

duration in the parameter update step. Deviation from the

state duration parameters may also be explicitly penalized

as shown with small variance asymptotic analysis of hidden

Markov jump processes (Huggins et al. 2015).

7 SOSC Algorithm

SOSC is an unsupervised non-parametric online learning

algorithm for clustering time-series data. It incrementally

projects the streaming data in low dimensional subspaces and

‖Setting di = 0 by choosing λ1 ≫ 0 gives the loss function for-

mulation with isotropic Gaussian under small variance asymptotics

(Roychowdhury et al. 2013).

Prepared using sagej.cls

10 The International Journal of Robotics Research XX(X)

Algorithm 1 Scalable Online Sequence Clustering (SOSC)

Input: < λ, λ1, λ2, λ3, σ
2, bm >

procedure SOSC

1: Initialize K := 1, {d0,K , c0,K,K , µS
0,K , n0,K , eK} := 0

2: while new ξt+1 is added do

3: zt+1 = argmini=1:K+1











q1,i, if {at,zt,i > 0, i ≤ K}
q2,i, if {at,zt,i = 0, i ≤ K}
q3,i, otherwise,

by computing q1,i, q2,i, q3,i using Eq. (28), (29), (30)

4: if zt+1 = K + 1 then

5: K := K + 1, µt+1,K := ξt, Σt+1,K := σ2I

6: {dt+1,K , ct+1,K,K , µS
old,K , nt+1,K , et+1,K} := 0

7: else

8: Update µt+1,zt+1
using Eq. (10)

9: Solve Rt+1,zt+1
, update U

dt,zt+1

t+1,zt+1
using Eq. (20)

10: Update dt+1,zt+1
using Eq. (25)

11: Update Σt+1,zt+1
using Eq. (27)

12: end if

13: Update ct+1,zt,zt+1
, at+1,zt,zt+1

using Eq. (31), (32)

14: if zt+1 = zt then

15: st+1 := st + 1
16: else

17: st+1 := 0, nt+1,zt := nt,zt + 1
18: Update µS

t+1,zt using Eq. (34)

19: Update et+1,zt using Eq. (35)

20: Update ΣS
t+1,zt using Eq. (36) for nt,zt > 1

21: end if

22: zt := zt+1

23: for i := 1 to K do

24: if ‖µt+1,zt+1
− µt,i‖2 < λ then {i 6= zt+1}

25: Merge_Clusters(zt+1, i)
26: end if

27: end for

28: end while

29: return {µt,i,Σt,i, {at,i,j}Kj=1, µ
S
t,i,Σ

S
t,i}Ki=1

maintains a history of the duration steps and the subsequent

transition to other subspaces. The projection mechanism uses

a non-parametric locally linear principal component analysis

whose redundant dimensions are automatically discarded by

small variance asymptotic analysis along those dimensions,

while the spatio-temporal information is stored with an

infinite state hidden semi-Markov model. During learning,

if a cluster evolves such that it is closer to another cluster

than the threshold λ, the two clusters are merged into one

and the subspace of the dominant cluster is retained. The

overall algorithm is shown in Alg. 1 (see Extension A-3 for

associated codes and examples).

The algorithm yields a generative model that scales well

in higher dimensions and does not require computation of

numerically unstable gradients for the parameter updates

at each iteration. These desirable aspects of the model

comes at a cost of hard/deterministic clusters which could

be a bottleneck for some applications. Non-parametric

treatment aids the user to build the model online without

specifying the number of clusters and the subspace

dimension of each cluster, as the parameter set grows

with the size/complexity of the data during learning. The

penalty parameters introduced are more intuitive to specify

and act as regularization terms for model selection based

on the structure of the data. Note that the order of the

streaming data plays an important role during learning, and

multiple starts from different initial configurations may lead

to different solutions as we update the model parameters

after registering every new sample. Alternatively, the model

parameters can be initialized with a batch algorithm after

storing a few demonstrations, or the parameters can be

updated sequentially in a mini-batch manner. Systematic

investigation of these approaches is subject to future work.

7.1 Task-Parameterized Formulation of SOSC

Task-parameterized models provide a probabilistic formula-

tion to deal with different real world situations by adapt-

ing the model parameters in accordance with the external

task parameters that describe the situation, instead of hard

coding the solution for each new situation or handling it

in an ad hoc manner (Wilson and Bobick 1999; Calinon

2016; Tanwani and Calinon 2016a; Tanwani 2018). Task-

parameterized formulation of the SOSC model is able to

handle new situations by defining external reference frames

such as coordinate systems attached to an object whose

position and orientation may change during the task. When a

different situation occurs (position/orientation of the object

changes), changes in the task parameters/reference frames

are used to modulate the model parameters in order to adapt

the robot movement to the new situation.

We represent the task parameters with P coordinate sys-

tems, defined by {At,j , bt,j}Pj=1, where At,j denotes the ori-

entation of the frame as a rotation matrix and bt,j represents

the origin of the frame at time t. Each demonstration ξt is

observed from the viewpoint of P different experts/frames,

with ξ
(j)
t = A−1

t,j (ξt − bt,j) denoting the demonstration

observed with respect to frame j. The parameters of the task-

parameterized SOSC model are defined by Θt,TP-HSMM =
{

{µ(j)
t,i ,Σ

(j)
t,i }Pj=1, {at,i,m}Km=1, µ

S
t,i,Σ

S
t,i

}K

i=1
, where µ

(j)
t,i

and Σ
(j)
t,i define the mean and the covariance matrix of i-th

mixture component in frame j at time t. Parameter updates of

the task-parameterized SOSC algorithm remain the same as

described in Alg. 1, except the computation of the mean and

the covariance matrix is repeated for each frame separately.

In order to fuse information from the different experts

in an unseen situation represented by the frames

{Ãt,j , b̃t,j}Pj=1, we linearly transform the Gaussians

back to the global coordinates with {Ãt,j , b̃t,j}Pj=1, and

retrieve the new model parameters {µ̃t,i, Σ̃t,i} for the

i-th mixture component by computing the products of the

linearly transformed Gaussians

N (µ̃t,i, Σ̃t,i) ∝
P
∏

j=1

N
(

Ãt,jµ
(j)
t,i + b̃t,j , Ãt,jΣ

(j)
t,i Ã

⊤

t,j

)

.

(37)

Prepared using sagej.cls

Tanwani et al. 11

Figure 4. Non-stationary data shown on top is encoded with the SOSC model on bottom: (left) K := 4, dk is randomly chosen,

t := 1 . . . 2500, (middle) K := 4, dk := D − dk, t := 2501 . . . 5000, (right) K := 6, dk is the same as before, t := 5001 . . . 7500.

The product of Gaussians can be evaluated in an analytical

form with

µ̃t,i = Σ̃t,i

P
∑

j=1

(

Ãt,jΣ
(j)
t,i Ã

⊤

t,j

)−1 (

Ãt,jµ
(j)
t,i + b̃t,j

)

,

Σ̃t,i =





P
∑

j=1

(

Ãt,jΣ
(j)
t,i Ã

⊤

t,j

)−1





−1

. (38)

Loss function L(zt+1, d̃t+1,zt+1
, µ̃t+1,zt+1

, Ũ
d̃t+1,zt+1

t+1,zt+1
,

at+1,zt,zt+1
): Under the small variance asymptotics, the loss

function at time step t+ 1 for the task-parametrized SOSC

model with the resulting N (µ̃t+1,zt+1
, Σ̃t+1,zt+1

) yields

L(zt+1, d̃t+1,zt+1
, µ̃t+1,zt+1

, Ũ
d̃t+1,zt+1

t+1,zt+1
, at+1,zt,zt+1

) =

λ(K − 1) + λ1d̃t+1,zt+1
− λ2 log(azt,zt+1

) + λ3 τzt+1

+ dist(ξt+1, µ̃t+1,zt+1
, Ũ

d̃t+1,zt+1

t+1,zt+1
)2

≤ L(zt+1, d̃t,zt+1
, µ̃t,zt+1

, Ũ
d̃t,zt+1

t,zt+1
, at,zt,zt+1

),

where Ũ
d̃t+1,zt+1

t+1,zt+1
corresponds to the basis vectors of the

resulting Σ̃t+1,zt+1
and d̃t+1,zt+1

= minj d
(j)
t+1,zt+1

, i.e., the

product of Gaussians subspace dimension is defined by

the minimum of corresponding subspace dimensions of

the Gaussians in P reference frames for the zt+1 mixture

component.

8 Experiments, Results and Discussion

In this section, we first evaluate the performance of the

SOSC model to encode the synthetic data with a 3-

dimensional illustrative example, followed by its capability

to scale in high dimensional spaces. We then consider a

real-world application of learning robot manipulation tasks

for semi-autonomous teleoperation with the proposed task-

parameterized SOSC algorithm. The goal is to assess the

performance of the SOSC model to handle noisy online time-

series data in a parsimonious manner.

8.1 Synthetic Data

8.1.1 Non-Stationary Learning with 3-Dimensional Data:

We consider a 3-dimensional stream of datapoints ξt ∈ R
3

generated by stochastic sampling from a mixture of clusters

that are connected in a left-right cyclic HSMM. The centers

of the clusters are successively drawn from the interval

[−5, 5] such that the next cluster is at least 4
√
D units farther

than the existing set of clusters. Subspace dimension of each

cluster is randomly chosen to lie up to (D − 1) dimensions

(a line or a plane for 3-dimensions), and the basis vectors are

sampled randomly in that subspace. Duration steps in a given

state are sampled from a uniform distribution in the interval

[70, 90] after which the data is subsequently generated from

the next cluster in the model in a cyclic manner. A white

noise of N (0, 0.04I) is added to each sampled datapoint.

Model learning is divided in three stages: 1) for the first 2500

Prepared using sagej.cls

12 The International Journal of Robotics Research XX(X)

Figure 5. Evolution of K and dk with number of instances.

Figure 6. (left) Learned HSMM transition matrix and state

duration model representation with smax = 150, (right) rescaled

forward variable, hHSMM
t,i =

αHSMM
t,i

∑
K
k=1

αHSMM
t,k

, sampled from initial

position.

instances, the number of clusters is set to 4 and the subspace

dimension of each cluster is fixed, 2) for the subsequent

2500 instances, we change the subspace dimension of each

cluster to (D − dk) for k = 1 . . .K (for example, a line

becomes a plane), while keeping the same number of clusters,

and 3) two more clusters are then added in the mixture

model for the next 2500 instances without any change in the

subspace dimension of the previous clusters. The parameters

are defined as {λ = 3.6, λ1 = 0.35, λ2 = λ3 = 0.025, σ2 =
0.15, bm = 50}. The weights of the parameter update are

based on eligibility traces as in Eq. (18) with a discount factor

of 0.995.

Results of the learned model are shown in Fig. 4. We

can see that the SOSC model is able to efficiently encode

the number of clusters and the subspace dimension of

each cluster in each stage of the learning process. The

model projects each datapoint in the subspace of the nearest

cluster contrary to the K-means clustering which assigns

the datapoint to the nearest cluster based on the Euclidean

distance metric only. The model is able to adapt the subspace

dimension of each cluster in the second stage of the learning

process and subsequently incorporate more clusters in the

final stage with the non-stationary data. Fig. 5 shows

the evolution of the number of clusters and the subspace

dimension of each cluster with the streaming data. Note

that the encoding problem is considerably hard here as the

model starts with one cluster only and adapts during the

learning process. Clusters that evolve to come closer to a

certain threshold are merged during the learning process. Fig.

6 shows the graphical model representation of the learned

HSMM with the state transitions and the state duration

model, along with a sample of the forward variable generated

from the initial position (see Eq. (46)).

8.1.2 Stationary Learning with High-Dimensional Data:

In this experiment, we sample the data from a stationary

distribution corresponding to the first stage of the previous

example where K = 4 and the subspace of each cluster does

not change in the streaming data. Dimensionality of the data

is successively chosen from the set D = {10, 25, 50, 75},

and the number of instances are varied for each dimension

from the set T = {1000, 2500, 5000, 7500}. Parameter λ
is experimentally selected for each dimension to achieve

satisfying results and the weights of the parameter update

are linearly incremented for each cluster. Fig. 7 shows the

performance of the SOSC model to encode data in high

dimensions averaged over 10 iterations. Our results show that

the algorithm yields a compact encoding, as indicated by

high values of the average silhouette score (SS),∗∗ and the

normalized mutual information (NMI) score,†† while being

robust to the intrinsic subspace dimension of the data and the

number of clusters.

8.2 Learning Manipulation Skills for

Semi-Autonomous Teleoperation

We are interested in performing remote manipulation tasks

with robots via teleoperation within the DexROV project

(Gancet et al. 2015, 2016). Direct teleoperation, where

the teleoperator actions are directly reproduced on the

remote robot, is often infeasible due to the presence

of communication latencies and noise in the feedback.

Predicting/correcting the response of the operator can

assist the teleoperator in executing these manipulation

tasks (Dragan and Srinivasa 2013; Maeda et al. 2015). In

this paper, we build the task-parameterized SOSC model

online from the teleoperator demonstrations and provide a

probabilistic formulation to predict his/her intention while

performing the task. The model is used to recognize the

intention of the teleoperator, and synthesize motion on

the remote end to perform manipulation tasks in a semi-

autonomous manner. Two didactic examples of manipulation

tasks are incrementally learned for guided assistance: target

tracking with a screwdriver and hooking a carabiner, see also

(Havoutis et al. 2016) for an application of this work to hot-

stabbing task.

∗∗Silhouette score (SS) measures the tightness of a cluster relative to the

other clusters without using any labels,

SSi ,
bi − ai

max{ai, bi}
, SSi ∈ [−1, 1],

where ai is the mean distance of ξi to the other points in its own cluster,

and bi is the mean distance of ξi to the points in the closest ‘neighbouring’

cluster.
††Normalized mutual information (NMI) is an extrinsic information-

theoretic measure to evaluate the alignment between the assigned cluster

labels Z and the ground truth cluster labels X ,

NMI(Z,X) ,
I(Z,X)

[H(Z) +H(X))]/2
, NMI(Z,X) ∈ [0, 1],

where I(Z,X) is the mutual information and H(X) is the entropy of

cluster labels X .

Prepared using sagej.cls

Tanwani et al. 13

Figure 7. SOSC model evaluation to encode synthetic high-dimensional data. Results are averaged over 10 iterations. Black

dotted lines indicate the reference value: (top-left) silhouette score (SS), (top-middle) normalized mutual information score (NMI),

(top-right) time in seconds, (bottom-left) average distance between learned cluster means and ground truth, (bottom-middle)

number of clusters, (bottom-right) average subspace dimension across all clusters.

Figure 8. Semi-autonomous teleoperation with the Baxter robot

for guided assistance of manipulation tools: (top) screwdriving

with a reference frame attached to the movable target, (bottom)

hooking a carabiner with a reference frame attached to a

rotatable rod.

8.2.1 Experimental Setup: In our experimental setup

with the Baxter robot, the operator teleoperates the right

arm, with the left arm used as input device. The tool

Figure 9. Joint distribution of the task-parameterized SOSC

model for guided assistance in the screwdriving task (top) and

hooking a carabiner task (bottom). Demonstrations and model

with respect to the input dimensions of the reference frame on

(left), and with respect to the output dimensions of the reference

frame on (right).

(screwdriver/carabiner) is mounted on the end-effector of the

right arm and the target (movable object/rotatable rod) is

Prepared using sagej.cls

14 The International Journal of Robotics Research XX(X)

placed at a reachable location from the arm. Demonstrations

are performed in the direct control mode where the desired

pose of the right arm is computed by adding an offset

in the lateral direction to the end-effector position of the

teleoperator’s arm. The teleoperator guides the tool to

different target locations by visual feedback, as shown in Fig.

8.

8.2.2 Learning Problem: Let us denote ξt =
[

ξI
⊤

t ξO
⊤

t

]

⊤

with ξI

t ∈ R
7 and ξO

t ∈ R
7 representing respectively the

input state of the teleoperator arm and the input state of the

teleoperator arm observed in the reference frame of the target

pose of the tool (screwdriver/carabiner). The state of the

teleoperator arm is represented by the position x
p
t ∈ R

3 and

the orientation εot ∈ R
4 of the teleoperator arm end-effector

in their respective reference frames with D = 14. We attach

a frame {At,1, bt,1} to the target pose of the tool, described

by

At,1 =





II
0 0

0 RO

t,1 0

0 0 EO

t,1



 , bt,1 =





0

pO

t,1

0



 , (39)

where pO

t,1 ∈ R
3,RO

t,1 ∈ R
3×3, EO

t,1 ∈ R
4×4 denote the

Cartesian position, the rotation matrix and the quaternion

matrix of the frame/tool at time t respectively. Note that

the frame has two components, the input component

represents the teleoperator pose in the global reference

frame corresponding to ξI

t , while the output component

maps the teleoperator state with respect to the target

pose corresponding to ξO

t . The observation variable ξt
is augmented to couple the movement of the robot arm

and the target, i.e., we learn the mapping between the

teleoperator pose and the teleoperator pose observed in the

reference frame of the target as a joint distribution. The

coupling strength depends upon the variations observed in

the demonstrations. Parts of the movement with invariant

characteristics appear when approaching the target where

the teleoperator movement is synchronized with the

target. Based on the learned joint distribution of the

task-parameterized SOSC model, we seek to recognize

the intention of the teleoperator and subsequently correct

the current state of the teleoperated arm. In case of

communication disruptions, we solicit the model to generate

movement on the remote arm in an autonomous manner until

further communication is re-established. We present two

formulations of the algorithm to assist the teleoperator in

performing remote manipulation tasks Tanwani and Calinon

(2017): 1) time-independent shared control, and 2) time-

dependent autonomous control.

Time-Independent Shared Control: We seek to leverage

upon the SOSC model to adjust the movement of the robot

in following the teleoperator state in a time-independent

manner based on the principle of shared control. Given

the current state of the teleoperator arm ξI

t and the task-

parametrized SOSC model encoding the joint distribution

as N (µ̃t,i, Σ̃t,i), the conditional probability distribution of

the teleoperator arm with respect to the target P(ξO

t |ξI

t)

can be approximated as N (µ̃O

t , Σ̃
O

t) using Gaussian mixture

regression (Ghahramani and Jordan 1994), namely

µ̃O

t =
K
∑

i=1

hi(ξ
I

t) µ̂
O

t,i(ξ
I

t), (40)

Σ̃
O

t =

K
∑

i=1

hi(ξ
I

t)
(

Σ̂
O

t,i + û
O

t,i(ξ
I

t)(µ̂
O

t,i(ξ
I

t))
⊤

)

− µ̃O

t µ̃
O

t
⊤

,

(41)

with hi(ξ
I

t) =
πiN (ξI

t | µ̃I

t,i, Σ̃
I

t,i)
∑K

k πkN (ξI

t | µ̃I

t,k, Σ̃
I

t,k)
, (42)

µ̂
O

t,i(ξ
I

t) = µ̃O

t,i + Σ̃
OI

t,i Σ̃
I

t,i

−1
(ξI

t − µ̃I

t,i), (43)

Σ̂
O

t,i = Σ̃
O

t,i − Σ̃
OI

t,i Σ̃
I

t,i

−1
Σ̃

IO

t,i , (44)

where µ̃t,i =

[

µ̃I

t,i

µ̃O

t,i

]

, and Σ̃t,i =

[

Σ̃
I

t,i Σ̃
IO

t,i

Σ̃
OI

t,i Σ̃
O

t,i

]

.

The output Gaussian N (µ̃O

t , Σ̃
O

t) predicts the teleoperator

state and the uncertainty associated with the state in the

reference frame of the target. Let us denote κ2I as the

uncertainty associated with the teleoperator input state ξI

t in

performing the manipulation task. Higher values of κ2 are

used when the confidence of the teleoperator in performing

the task is low, for example, when the feedback is noisy,

the task is complex or the teleoperator is novice, and

vice versa for lower values of κ2. Hence, the Gaussian

N (ξI

t , κ
2I) represents the uncertainty associated with the

current teleoperator state, while the Gaussian N (µ̃O

t , Σ̃
O

t)
predicts the teleoperator state based on the invariant patterns

observed in the demonstrations with respect to the target. The

resulting desired state N (µ̂t, Σ̂t) is obtained by taking the

product of Gaussians corresponding to the teleoperator state

and the predicted state, namely

N (µ̂t, Σ̂t) ∝ N (ξI

t , κ
2I) N (µ̃O

t , Σ̃
O

t). (45)

The resulting desired state is followed in a smooth

manner with an infinite horizon linear quadratic regulator

(Borrelli et al. 2011) (see Appx. C).

Time-Dependent Autonomous Control: In case of

communication disruptions, when it is difficult to retrieve

the state of the teleoperator, the manipulation task can be

completed in an autonomous manner. Task-parameterized

SOSC model is used to generate the robot movement

in an autonomous manner with the help of the forward

variable αHSMM

t,i , P (zt = i, ξ1 . . . ξt|θh). Given the model

parameters θh and the partial observation sequence ξ1 . . . ξt,
the probability of a datapoint ξt to be in state i at time t is

recursively computed in the explicit duration HSMM using

the forward variable as

αHSMM

t,i =

K
∑

j=1

min(smax,t−1)
∑

s=1

αHSMM

t−s,j aj,i N (s|µS
i ,Σ

S
i)

t
∏

c=t−s+1

N (ξc|µ̃i, Σ̃i). (46)

The forward variable is used to evaluate the current state

of the task ξto using αHSMM

to,i
=

πiN (ξ
to

|µ̃
i
,Σ̃i)

∑
K
k=1

πkN (ξ
to

|µ̃
k
,Σ̃k)

, and

Prepared using sagej.cls

Tanwani et al. 15

Figure 10. Semi-autonomous teleoperation for a new target

pose with a screwdriver (top) and a carabiner (bottom). Shared

control example (left): the teleoperator demonstration (in red)

strays away from the target pose, while the corrected trajectory

(in blue) reaches the target pose. Desired state N (µ̂t, Σ̂t) is

shown in purple, teleoperator state N (ξI

t , κ
2I) in red, and

predicted state N (µ̃O

t , Σ̃
O

t) in green (see Sec. 8.2.2 for details).

Autonomous control example (right): the arm movement is

randomly switched (marked with a cross) from direct control (in

red) to autonomous control (in purple) in which the learned

model is used to generate the movement to the target pose.

Figure 11. HSMM graphical model representation

(smax = 150) along with evolution of the rescaled forward

variable for screwdriving (top) and hooking a carabiner (bottom).

subsequently plan the movement sequence for the next T
steps with t = (to + 1) . . . T . Note that only the transition

Table 1. Performance comparison of the SOSC model against

parametric batch HSMM models using number of parameters

Np, and the endpoint error between the teleoperated arm and

the target. Teleoperation modes are direct control (DC), shared

control (SC) and autonomous control (AC). Errors are in meters.

Model Np
DC SC AC

Error Error Error

screw-driving task (K = 3, D = 14)

FC-HSMM 372
0.095± 0.038±
0.025 2.5× 10−5

ST-HSMM 295
0.094± 0.037±

0.30± 0.026 1.8× 10−5

MFA-HSMM
267

0.17 0.099± 0.037±
(dk = 4) 0.022 7.7× 10−6

SOSC
211

0.084± 0.043±
(d̄k = 3.67) 0.018 1.3× 10−4

hooking carabiner task (K = 4, D = 14)

FC-HSMM 500
0.081± 0.099±
0.056 0.068

ST-HSMM 332
0.082± 0.022±

0.10± 0.058 2.6× 10−4

MFA-HSMM
360

0.062 0.08± 0.037±
(dk = 4) 0.056 8.8× 10−4

SOSC
318

0.08± 0.073±
(d̄k = 4.25) 0.056 3.7× 10−4

matrix and the duration model are used to plan the future

evolution of the initial/current state ξto (the influence of

the spatial data is omitted as it has not been observed),

i.e., N (ξt|µ̃i, Σ̃i) = 1 for t = (to + 1) . . . T . This is used to

retrieve a stepwise reference trajectory N (µ̂t, Σ̂t) from the

state sequence zt computed from the forward variable. The

stepwise reference trajectory is tracked in a smooth manner

with a finite-horizon linear quadratic tracking controller

(Tanwani and Calinon 2016a) (see Appx. D), based on

zt = argmax
i

αHSMM

t,i , µ̂t = µ̃O

zt
, Σ̂t = Σ̃

O

zt
. (47)

We exploit the time-dependent autonomous control

formulation to assist the teleoperator in performing

challenging tasks and/or to counter large communication

latencies. The teleoperator can switch at any time to to

the autonomous mode upon which the robot arm re-plans

and executes the task for the next T steps. When the

task is accomplished or the communication channel is re-

established, the operator can switch back to the manual

control upon which the robot arm returns to the teleoperated

state.

8.2.3 Results and Discussions: We collect 6 kines-

thetic demonstrations for screwdriving with the initial pose

of the target rotated/translated in the successive demon-

strations, and perform 11 demonstrations of hooking a

carabiner at various places on the rod for 3 different

rotated configurations of the rod segment. Demonstrations

are subsampled to 200 datapoints for each demonstra-

tion, corresponding to an average of 7 Hz. The parame-

ters are defined as {λ = 0.65, λ1 = 0.03, λ2 = 0.001, λ3 =
0.04, σ2 = 2.5× 10−4, κ2 = 0.01}.

Results of the task-parameterized SOSC model for the

two tasks are shown in Fig. 9. We observe that the model

Prepared using sagej.cls

16 The International Journal of Robotics Research XX(X)

exploits the variability in the demonstrations to statistically

encode different phases of the task in the joint distribution.

Demonstrations corresponding to the input component of the

reference frame encode the reaching movement to different

target poses with the screwdriver and the carabiner in the

global frame, while the output component of the reference

frame represents this movement observed from the viewpoint

of the target (respectively shown as converging to a point

for the screwdriver and to a line for the carabiner). The

learned model for the screwdriving task contains 3 clusters

with subspace dimensions {4, 3, 4}, while the carabiner

task model contains 4 clusters with subspace dimensions

{5, 5, 4, 3}.

Fig. 10 (left) shows how the model adjusts the movement

of the teleoperator based on his/her current state in a

time-independent manner. When the teleoperator is away

from the target, the variance in the output distribution

N (µ̃O

t , Σ̃
O

t) is high and its product with the teleoperator

frame N (ξI

t , κ
2I) yields the desired state N (µ̂t, Σ̂t) closer

to the teleoperator as in direct teleoperation. As the

teleoperator moves closer to the target and visits low variance

segments of N (µ̃O

t , Σ̃
O

t), the desired state moves closer to

the target as compared to the teleoperator. Consequently,

the shared control formulation corrects the movement of

the teleoperator when the teleoperator is straying from the

target. Table 1 shows the performance improvement of

shared control over direct control where the endpoint error

is reduced from 0.3 to 0.084 meters for the screwdriving

task, and from 0.1 to 0.08 meters for the carabiner task.

Error is measured at the end of the demonstration from

the end-effector of the teleoperated arm to the target of

the screwdriver, and to the rod segment for hooking the

carabiner (see Appx. A-1 for video of the semi-autonomous

teleoperation experiments and results).

To evaluate the autonomous control mode of the task-

parameterized SOSC model, the teleoperator performs 6
demonstrations and switches to the autonomous mode

randomly while performing the task. The teleoperated arm

evaluates the current state of the task and generates the

desired sequence of states to be visited for the next T steps

using the forward variable, as shown in Fig. 11. Fig. 10

(right) shows that the movement of the robot converges

to the target from different initial configurations of the

teleoperator. As shown in Table 1, the obtained results are

repeatable and more precise than the direct and the shared

control results. Table 1 also compares the performance of the

SOSC algorithm against several parametric batch versions

of HSMMs with different covariance models in the output

state distribution, including full covariance (FC-HSMM),

semi-tied covariance (ST-HSMM), and MFA decomposition

of covariance (MFA-HSMM). Results of the SOSC model

are used as a benchmark for model selection of the batch

algorithms. We can see that the proposed non-parametric

online learning model gives comparable performance to

other parametric batch algorithms with a more parsimonious

representation (reduced number of model parameters).

In our future work, we plan to bootstrap the online

learning process with the batch algorithm after a few

initial demonstrations of the task. We would like to use

the initialized model to make a guess about the penalty

parameters for non-parametric online learning. Moreover, we

plan to test the model under more realistic environments with

large communication latencies typically observed in satellite

communication.

9 Conclusions

Non-parametric online learning is a promising way for

adapting a model of movement behaviors while new training

data are acquired. In this paper, we have presented a non-

parametric scalable online sequence clustering algorithm by

online inference in DP-MPPCA and HDP-HSMM under

small variance asymptotics. The algorithm incrementally

clusters the streaming data with non-parametric locally

linear principal component analysis, and encodes the spatio-

temporal patterns using an infinite hidden semi-Markov

model. Non-parametric treatment gives the flexibility

to continuously adapt the model with new incoming

data. Learning the model online from a few human

demonstrations is a pragmatic approach to teach new

skills to robots. The proposed skill encoding scheme is

potentially applicable to a wide range of tasks, while

being robust to varying environmental conditions with the

task-parameterized formulation. We show the efficacy of

the approach to learn manipulation tasks online for semi-

autonomous teleoperation, and assist the operator with

shared control and/or autonomous control when performing

remote manipulation tasks.

Funding

This work was in part supported by the DexROV project through

the EC Horizon 2020 programme (Grant #635491).

References

Argall BD, Chernova S, Veloso M and Browning B (2009) A survey

of robot learning from demonstration. Robot. Auton. Syst.

57(5): 469–483.

Asfour T, Azad P, Gyarfas F and Dillmann R (2008) Imitation

learning of dual-arm manipulation tasks in humanoid robots.

I. J. Humanoid Robotics 5(2): 183–202.

Beal MJ, Ghahramani Z and Rasmussen CE (2002) The infinite

hidden markov model. In: Machine Learning. pp. 29–245.

Bellas A, Bouveyron C, Cottrell M and Lacaille J (2013) Model-

based clustering of high-dimensional data streams with online

mixture of probabilistic pca. Advances in Data Analysis and

Classification 7(3): 281–300.

Billard AG, Calinon S and Dillmann R (2016) Learning from

humans. In: Siciliano B and Khatib O (eds.) Handbook of

Robotics, chapter 74. Secaucus, NJ, USA: Springer, pp. 1995–

2014. 2nd Edition.

Borrelli F, Bemporad A and Morari M (2011) Predictive control for

linear and hybrid systems. Cambridge University Press.

Bouveyron C and Brunet C (2014) Model-based clustering of high-

dimensional data: A review. Computational Statistics and Data

Analysis 71: 52–78.

Broderick T, Kulis B and Jordan MI (2013) Mad-bayes: Map-based

asymptotic derivations from bayes. In: Proceedings of the 30th

International Conference on Machine Learning, ICML 2013,

Atlanta, GA, USA, 16-21 June 2013. pp. 226–234.

Prepared using sagej.cls

Tanwani et al. 17

Bruno D, Calinon S and Caldwell DG (2016) Learning autonomous

behaviours for the body of a flexible surgical robot.

Autonomous Robots : 1–15DOI:10.1007/s10514-016-9544-6.

Calinon S (2016) A tutorial on task-parameterized movement

learning and retrieval. Intelligent Service Robotics 9(1): 1–29.

DOI:10.1007/s11370-015-0187-9.

Calinon S, D’halluin F, Sauser EL, Caldwell DG and Billard AG

(2010) Learning and reproduction of gestures by imitation: An

approach based on hidden Markov model and Gaussian mixture

regression. IEEE Robotics and Automation Magazine 17(2):

44–54.

Campbell T, Liu M, Kulis B, How JP and Carin L (2013) Dynamic

clustering via asymptotics of the dependent dirichlet process

mixture. In: Burges CJC, Bottou L, Ghahramani Z and

Weinberger KQ (eds.) NIPS. pp. 449–457.

Chen M, Silva JG, Paisley JW, Wang C, Dunson DB and

Carin L (2010) Compressive sensing on manifolds using a

nonparametric mixture of factor analyzers: Algorithm and

performance bounds. IEEE Trans. Signal Processing 58(12):

6140–6155.

Dempster AP, Laird NM and Rubin DB (1977) Maximum

likelihood from incomplete data via the EM algorithm. Journal

of the Royal Statistical Society B 39(1): 1–38.

Dragan AD and Srinivasa SS (2013) A policy-blending formalism

for shared control. I. J. Robotic Res. 32(7): 790–805.

Figueroa N and Billard A (2017) Learning complex manipulation

tasks from heterogeneous and unstructured demonstrations.

IROS Workshop on Synergies between Learning and Interac-

tion.

Fox EB, Sudderth EB, Jordan MI and Willsky AS (2008) An hdp-

hmm for systems with state persistence. In: Proceedings of

the 25th International Conference on Machine Learning, ICML

’08. pp. 312–319.

Gancet J, Urbina D, Letier P, Ilzokvitz M, Weiss P, Gauch F,

Antonelli G, Indiveri G, Casalino G, Birk A, Pfingsthorn

MF, Calinon S, Tanwani A, Turetta A, Walen C and

Guilpain L (2015) Dexrov: Dexterous undersea inspection and

maintenance in presence of communication latencies. IFAC-

PapersOnLine 48(2): 218 – 223. DOI:http://dx.doi.org/10.

1016/j.ifacol.2015.06.036.

Gancet J, Weiss P, Antonelli G, Pfingsthorn MF, Calinon S, Turetta

A, Walen C, Urbina D, Govindaraj S, Letier P, Martinez

X, Salini J, Chemisky B, Indiveri G, Casalino G, Di Lillo

P, Simetti E, De Palma D, Birk A, Tanwani AK, Havoutis

I, Caffaz A and Guilpain L (2016) Dexterous undersea

interventions with far distance onshore supervision: the dexrov

project. In: IFAC Conference on Control Applications in

Marine Systems (CAMS). pp. 414–419. DOI:10.1016/j.ifacol.

2016.10.439.

Ghahramani Z and Jordan MI (1994) Supervised learning from

incomplete data via an EM approach. In: Cowan JD, Tesauro

G and Alspector J (eds.) Advances in Neural Information

Processing Systems, volume 6. San Francisco, CA, USA:

Morgan Kaufmann Publishers, Inc., pp. 120–127.

Gijsberts A and Metta G (2013) Real-time model learning

using incremental sparse spectrum gaussian process regression.

Neural Networks 41: 59 – 69. Special Issue on Autonomous

Learning.

Havoutis I, Tanwani AK and Calinon S (2016) Online incremental

learning of manipulation tasks for semi-autonomous teleop-

eration. In: IROS workshop on Closed Loop Grasping and

Manipulation.

Hoyos J, Prieto F, Alenyà G and Torras C (2016) Incremental

learning of skills in a task-parameterized gaussian mixture

model. Journal of Intelligent and Robotic Systems 82(1): 81–

99.

Huggins JH, Narasimhan K, Saeedi A and Mansinghka VK

(2015) Jump-means: Small-variance asymptotics for markov

jump processes. In: Proceedings of the 32nd International

Conference on Machine Learning, ICML 2015, Lille, France,

6-11 July 2015. pp. 693–701.

Jiang K, Kulis B and Jordan MI (2012) Small-variance asymptotics

for exponential family dirichlet process mixture models. In:

Pereira F, Burges CJC, Bottou L and Weinberger KQ (eds.)

Advances in Neural Information Processing Systems 25. Curran

Associates, Inc., pp. 3158–3166.

Johnson MJ and Willsky AS (2013) Bayesian nonparametric hidden

semi-markov models. J. Mach. Learn. Res. 14(1): 673–701.

Krishnan S, Garg A, Patil S, Lea C, Hager G, Abbeel P and

Goldberg K (2015) Transition state clustering: Unsupervised

surgical trajectory segmentation for robot learning. In: Proc.

Intl Symp. on Robotics Research (ISRR).

Kronander K, Khansari M and Billard A (2015) Incremental motion

learning with locally modulated dynamical systems. Robotics

and Autonomous Systems 70: 52–62.

Kulic D, Takano W and Nakamura Y (2008) Incremental learning,

clustering and hierarchy formation of whole body motion

patterns using adaptive hidden markov chains. Intl Journal of

Robotics Research 27(7): 761–784.

Kulis B and Jordan MI (2012) Revisiting k-means: New algorithms

via bayesian nonparametrics. In: Proceedings of the 29th

International Conference on Machine Learning (ICML-12).

New York, NY, USA: ACM, pp. 513–520.

Lee D and Ott C (2010) Incremental motion primitive learning

by physical coaching using impedance control. In: Proc.

IEEE/RSJ Intl Conf. on Intelligent Robots and Systems (IROS).

Taipei, Taiwan, pp. 4133–4140.

Lee D, Ott C and Nakamura Y (2010) Mimetic communication

model with compliant physical contact in human - humanoid

interaction. I. J. Robotic Res. 29(13): 1684–1704.

Maeda G, Neumann G, Ewerton M, Lioutikov R and Peters J

(2015) A probabilistic framework for semi-autonomous robots

based on interaction primitives with phase estimation. In:

International Symposium of Robotics Research.

McLachlan GJ, Peel D and Bean RW (2003) Modelling

high-dimensional data by mixtures of factor analyzers.

Computational Statistics and Data Analysis 41(3-4): 379–388.

Neal RM and Hinton GE (1999) A view of the EM algorithm that

justifies incremental, sparse, and other variants. In: Learning in

graphical models. Cambridge, MA, USA: MIT Press, pp. 355–

368.

Nguyen-Tuong D, Seeger M and Peters J (2009) Model learning

with local gaussian process regression. Advanced Robotics

23(15): 2015–2034.

Niekum S, Osentoski S, Konidaris G and Barto AG (2012) Learning

and generalization of complex tasks from unstructured

demonstrations. In: IEEE/RSJ International Conference on

Intelligent Robots and Systems. pp. 5239–5246.

Prepared using sagej.cls

18 The International Journal of Robotics Research XX(X)

Opper M (1998) On-line learning in neural networks. chapter A

Bayesian Approach to On-line Learning. Cambridge University

Press, pp. 363–378.

Pitman J (2002) Poisson-dirichlet and gem invariant distributions

for split-and-merge transformations of an interval partition.

Combinatorics, Probability and Computing 11: 501–514.

Rabiner LR (1989) A tutorial on hidden Markov models and

selected applications in speech recognition. Proc. IEEE 77:2:

257–285.

Roychowdhury A, Jiang K and Kulis B (2013) Small-variance

asymptotics for hidden markov models. In: Advances in Neural

Information Processing Systems 26. Curran Associates, Inc.,

pp. 2103–2111.

Schaal S, Ijspeert A and Billard A (2003) Computational

approaches to motor learning by imitation. Philosophical

Transaction of the Royal Society of London: Series B,

Biological Sciences 358(1431): 537–547.

Schaal S, Mohajerian P and Ijspeert A (2007) Dynamics systems vs.

optimal control a unifying view. Progress in Brain Research

165: 425–445.

Sethuraman J (1994) A constructive definition of Dirichlet priors.

Statistica Sinica 4: 639–650.

Song M and Wang H (2005) Highly efficient incremental estimation

of Gaussian mixture models for online data stream clustering.

In: Proc. of SPIE: Intelligent Computing - Theory and

Applications III, volume 5803. pp. 174–183.

Stulp F and Sigaud O (2015) Many regression algorithms, one

unified model - A review. Neural Networks : 28.

Sutton RS and Barto AG (1998) Reinforcement Learning: An

Introduction. Cambridge, MA: MIT Press.

Tanwani AK (2018) Generative Models for Learning Robot

Manipulation Skills from Humans. PhD Thesis, Ecole

Polytechnique Federale de Lausanne, Switzerland.

Tanwani AK and Calinon S (2016a) Learning robot manipulation

tasks with task-parameterized semitied hidden semi-markov

model. Robotics and Automation Letters, IEEE 1(1): 235–242.

DOI:10.1109/LRA.2016.2517825.

Tanwani AK and Calinon S (2016b) Online inference in

bayesian non-parametric mixture models under small variance

asymptotics. In: NIPS workshop on Advances in Approximate

Bayesian Inference. pp. 1–5.

Tanwani AK and Calinon S (2017) A generative model for intention

recognition and manipulation assistance in teleoperation. In:

IEEE/RSJ International Conference on Intelligent Robots and

Systems, IROS. pp. 43–50. DOI:10.1109/IROS.2017.8202136.

Teh YW, Jordan MI, Beal MJ and Blei DM (2006) Hierarchical

dirichlet processes. Journal of the American Statistical

Association 101(476): 1566–1581.

Tipping ME and Bishop CM (1999) Mixtures of probabilistic

principal component analyzers. Neural Computation 11(2):

443–482.

Vakanski A, Mantegh I, Irish A and Janabi-Sharifi F (2012)

Trajectory learning for robot programming by demonstration

using hidden markov model and dynamic time warping. IEEE

Transactions on Systems, Man, and Cybernetics, Part B

(Cybernetics) 42(4): 1039–1052.

Van Gael J, Saatci Y, Teh YW and Ghahramani Z (2008) Beam

sampling for the infinite hidden markov model. In: Proceedings

of the 25th International Conference on Machine Learning,

ICML ’08. New York, NY, USA, pp. 1088–1095.

Vijayakumar S, D’souza A and Schaal S (2005) Incremental online

learning in high dimensions. Neural Computation 17(12):

2602–2634.

Wang Y and Zhu J (2015) DP-space: Bayesian nonparametric

subspace clustering with small-variance asymptotics. In:

Proceedings of the 32nd International Conference on Machine

Learning, ICML 2015, Lille, France, 6-11 July 2015. pp. 862–

870.

Wilson AD and Bobick AF (1999) Parametric hidden Markov

models for gesture recognition. IEEE Trans. on Pattern

Analysis and Machine Intelligence 21(9): 884–900.

Yu SZ (2010) Hidden semi-Markov models. Artificial Intelligence

174: 215–243.

Zhang Z, Chan KL, Kwok JT and Yeung D (2004) Bayesian

inference on principal component analysis using reversible

jump markov chain monte carlo. In: Proceedings of the

Nineteenth National Conference on Artificial Intelligence,

Sixteenth Conference on Innovative Applications of Artificial

Intelligence, July 25-29, 2004, San Jose, California, USA. pp.

372–377.

Prepared using sagej.cls

19

Appendices

A Index to Multimedia Extensions

Table 2. Index to multimedia extensions.

Ext Type Description

1 video semi-autonomous teleoperation results

2 video SOSC simulations

3 codes algorithms, experiments and datasets

B Symbols and Descriptions

Table 3. Description of symbols.

Symbol Description

ξt observation at time t of dimension D

zt hidden state of ξt in {1 . . .K}
at transition matrix with entries at,i,j

{µS
t,i,Σ

S
t,i} state duration mean and variance

{µt,i,Σt,i} output state distribution parameters

dt,i subspace dimension of state/cluster

Λ
dt,i

t,i projection matrix of dt,i eigen vectors

U
dt,i

t,i dt,i basis vectors of Σt,i

bm bandwidth parameter to limit cluster size

wt,i weight of parameter set at time t

gt,i projection of ξt on U
dt,i

t,i

pt,i retro-projection of gt,i in original space

Rt,i rotation matrix to update U
dt,i

t,i

δi distance of ξt to each subspace of Uk
t,i

ēt,i average distance vector of δi

nt,i state transitions count from i till time t

ct,i,j state transitions count from i to j

st duration steps count

λ penalty for number of states

λ1 penalty for subspace dimension

λ2 penalty for transition to less visited states

λ3 penalty for transition to unvisited state

C Infinite Horizon Linear Quadratic

Regulator

The desired reference state N (µ̂t0
, Σ̂t0) can be smoothly

followed by using an infinite-horizon linear quadratic

regulator with a double integrator system. The cost function

to minimize at current time step t0 is given by

c(ξt,ut) =

∞
∑

t=t0

(ξt − µ̂t0
)⊤Qt0

(ξt − µ̂t0
) + u⊤

tRut,

s.t. ξ̇t =

[

0 I

0 0

]

ξt +

[

0

I

]

ut,

where ut ∈ R
m is the control input of the system. Setting

Qt0
= Σ̂

−1

t0
,R ≻ 0, ξt = [xt

⊤ ẋt
⊤]⊤, µ̂t0

= [µ̂x⊤

t0
µ̂ẋ⊤

t0
]⊤

with x, ẋ representing the position and velocity of the

system, the optimal control input u∗
t obtained by solving the

algebraic Riccati equation is given by

u∗
t = KP

t (µ̂
x
t0
− xt) +KV

t (µ̂
ẋ
t0
− ẋt),

where KP

t and KV

t are the full stiffness and damping

matrices for following the desired reference state.

D Finite Horizon Linear Quadratic Tracking

Consider a double integrator system as an analogue of a

unit mass attached to the datapoint ξt. The desired step-

wise reference trajectory N (µ̂t, Σ̂t) is smoothly tracked by

minimizing the cost function

ct(ξt,ut) =

T
∑

t=1

(ξt − µ̂t)
⊤Qt(ξt − µ̂t) + u⊤

tRtut,

s.t. ξ̇t =

[

0 I

0 0

]

ξt +

[

0

I

]

ut,

starting from the initial state ξ1. Let ξt = [xt
⊤ ẋt

⊤]⊤, µ̂t =

[µ̂x
t
⊤

µ̂ẋ
t

⊤

]⊤ where x, ẋ represent the position and velocity of

the double integrator system. Setting Qt = Σ̂
−1

t � 0,Rt ≻
0, the control input u∗

t that minimizes the cost function is

given by

u∗
t = −R−1

t B⊤

dP t(ξt − µ̂t) +R−1
t B⊤

ddt,

= KP

t (µ̂
x
t − xt) +KV

t (µ̂
ẋ
t − ẋt) +R−1

t B⊤

ddt,

where [KP

t ,K
V

t] = R−1
t B⊤

dP t are the full stiffness and

damping matrices, R−1
t B⊤

ddt is the feedforward term, and

P t,dt are the solutions of the differential equations

−Ṗ t = A⊤

dP t + PtAd − P tBdR
−1
t B⊤

dP t +Qt,

−ḋt = A⊤

ddt − P tBdR
−1
t B⊤

ddt + P t
ˆ̇µt − P tAdµ̂t,

with terminal conditions set to P T = 0 and dT = 0. Note

that the gains can be precomputed before simulating

the system if the reference trajectory and/or the task

parameters do not change during the reproduction of the

task. The resulting trajectory ξ∗t smoothly tracks the stepwise

reference trajectory µ̂t and the gains KP

t ,K
V

t stabilize ξt
along ξ∗t in accordance with the precision required during

the task.

Prepared using sagej.cls

	1 Introduction
	1.1 Proposed Approach
	1.2 Contributions

	2 Background and Related Work
	3 Problem Setup
	4 SVA of DP-GMM
	4.1 Dirichlet Process GMM (DP-GMM)
	4.2 Online Inference in DP-GMM
	4.2.1 Cluster Assignment z_t+1:
	4.2.2 Parameters Update _t+1,GMM:

	5 Online DP-MPPCA
	5.1 Mixture of Probabilistic Principal Component Analyzers (MPPCA)
	5.2 Dirichlet Process MPPCA (DP-MPPCA)
	5.3 Online Inference in DP-MPPCA
	5.3.1 Cluster Assignment z_t+1:
	5.3.2 Parameter Updates _t+1,MPPCA:

	6 Online HDP-HSMM
	6.1 Hidden Semi-Markov Model (HSMM)
	6.2 Hierarchical Dirichlet Process Hidden Semi-Markov Model (HDP-HSMM)
	6.3 Online Inference in HDP-HSMM
	6.3.1 Cluster Assignment z_t+1:
	6.3.2 Parameter Updates _t+1,HSMM:

	7 SOSC Algorithm
	7.1 Task-Parameterized Formulation of SOSC

	8 Experiments, Results and Discussion
	8.1 Synthetic Data
	8.1.1 Non-Stationary Learning with 3-Dimensional Data:
	8.1.2 Stationary Learning with High-Dimensional Data:

	8.2 Learning Manipulation Skills for Semi-Autonomous Teleoperation
	8.2.1 Experimental Setup:
	8.2.2 Learning Problem:
	8.2.3 Results and Discussions:

	9 Conclusions
	Appendices
	A Index to Multimedia Extensions
	B Symbols and Descriptions
	C Infinite Horizon Linear Quadratic Regulator
	D Finite Horizon Linear Quadratic Tracking

