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Abstract— Performing remote manipulation tasks by tele-
operation with limited bandwidth, communication delays and
environmental differences is a challenging problem. In this
paper, we learn a task-parameterized generative model from
the teleoperator demonstrations using a hidden semi-Markov
model that provides assistance in performing remote manipu-
lation tasks. We present a probabilistic formulation to capture
the intention of the teleoperator, and subsequently assist the
teleoperator by time-independent shared control and/or time-
dependent autonomous control formulations of the model. In
the shared control mode, the model corrects the remote arm
movement based on the current state of the teleoperator;
whereas in the autonomous control mode, the model gener-
ates the movement of the remote arm for autonomous task
execution. We show the formulation of the model with virtual
fixtures and provide comparisons to benchmark our approach.
Teleoperation experiments with the Baxter robot for reaching
a movable target and opening a valve reveal that the proposed
methodology improves the performance of the teleoperator
and caters for environmental differences in performing remote
manipulation tasks.

I. INTRODUCTION

Teleoperated robots are going to increasingly assist hu-

mans in performing everyday life tasks as diverse as mini-

mally invasive surgeries, security/surveillance, telepresence,

warehouse management, remote patient monitoring, inspec-

tion/exploration in deep underwater or space missions. Tele-

operation provides a low cost solution to offload tedious

work from humans and reach distant and/or hazardous en-

vironments. Advancing the state-of-the-art in teleoperation

is the central focus of many research programs, including

DARPA Robotics and NASA Space Robotics challenges.

Improving autonomy in teleoperation, however, poses all

kind of challenges to the existing techniques due to lim-

ited bandwidth, communication latency, and environmental

differences between the teleoperator and the remote sites.

Within the DexROV project, we aim at achieving dexter-

ous manipulation tasks in remote underwater environments

[1]. Large communication delays with satellite communica-

tion render direct teleoperation infeasible, thereby, requiring

semi-autonomous capabilities of the remotely operated vehi-

cle to carry out manipulation tasks. Moreover, the operational

costs are significantly reduced by moving the teleoperation

personnel from the vessel to operate the vehicle from a

remote facility. We use the two-armed Baxter robot as a

mock-up of the teleoperation system, i.e., one arm becomes
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intention recognition manipulation assistance

Fig. 1: (top) generative model locally recognizes the intent of

the teleoperator and provides manipulation assistance, (bot-

tom) teleoperation mock-up with the two-armed Baxter robot

where one arm is used as input device for the teleoperator

and the other arm is used to perform remote manipulation

tasks.

the input device for the teleoperator, and the other one is

used for performing the manipulation task. The operator

controls/teleoperates the remote arm with a simulated delay

using the other arm by getting visual feedback from the

remote arm. A set of kinesthetic demonstrations of the

teleoperator is used to teach the robot how to perform

each task. We seek to leverage upon probabilistic generative

models to detect the intention of the teleoperator, and assist

the movement on the robot side under varying environmental

situations.

In this paper, we use a task-parameterized hidden semi-

Markov model (HSMM) [2], [3], [4] for semi-autonomous

teleoperation of remote manipulation tasks. The HSMM

clusters the demonstrations into meaningful segments or

primitives and encodes the transition patterns among the

segments. We assist the teleoperator using the learned model

by: 1) continuously correcting the movement of the remote

arm given the teleoperator arm data based on shared control,

or 2) generating the movement of the remote arm based

on autonomous control (see Fig. 1). We also show the

formulation of the model with virtual fixtures to benchmark

our approach. The predicted movement from the model

is smoothly followed by the remote arm with a discrete-

time linear quadratic tracker/regulator. Task-parameterized



formulation of the model allows the teleoperator to perform

the task with respect to the perceived environment (often

delayed/inconsistent compared to the actual remote environ-

ment), and the remote robot arm to adapt the movement lo-

cally in accordance with the actual situation. Our experiments

reveal that the proposed formulations of the model improves

the performance of the teleoperator by mitigating the effect

of imprecise movements.

A. Background and Related Work

Teleoperated robots are traditionally based on master-

slave architecture where the teleoperator (master) transmits

position/force to the robot (slave) in a unilateral mode, or

transmits and receives position/force via bilateral communi-

cation (see [5] for a detailed review). Bilateral teleoperation

uses a haptic interface to make the operator feel a partic-

ular impedance relative to the slave position or the force

recorded between the slave and the environment. Despite the

simple mechanism, teleoperation requires skilled personnel

to remotely operate the robot, while having limited access

to the controllable degrees of freedom and the sensory

feedback. Moreover, stability issues arise in handling envi-

ronmental uncertainty with communication delays between

the teleoperator and the robot. This has motivated several

control theoretic solutions such as scattering approach, wave

variables, passivity based control, multichannel feedback and

model prediction based control to deal with delayed force

reflections [6]. Modern day teleoperation systems use addi-

tional interfaces such as exoskeleton and/or head mounted

display to increase the sense of telepresence in performing

the task [7].

The teleoperator controls the remote robot using either: 1)

direct control, 2) shared control, or 3) supervisory control.

Direct teleoperation lacks the autonomy/intelligence to assist

the operator and the remote robot simply mimics the move-

ment of the teleoperator. Shared control corrects/fine-tunes

the continuously streamed teleoperator data by local sensory

feedback on the remote side. For constrained manipulation

tasks, virtual fixtures have been used to reduce the operator

workload by influencing the robot motion along desired

paths [8], [9]. Supervisory or autonomous control gives local

autonomy to the remote robot to execute manipulation tasks

in the presence of large communication delays. It makes use

of predictive displays and high-level symbolic commands of

atomic structure (such as reach, grasp, etc.) to breakdown a

task in smaller subtasks [10], [11].

Robot learning from demonstrations is a promising ap-

proach to assist humans in performing daily life tasks (see

[12], [13] for an overview). In this context, advancing

autonomy in teleoperation addresses two main problems:

1) predicting the operator’s intent while performing the

task, and 2) deciding how to assist the teleoperator. Both

aspects are closely related in cooperative robots for human-

robot collaboration [14], and in general describe the what-

to-imitate and how-to-imitate problems in programming by

demonstration. Depending upon how the word intention is

phrased, a vast amount of literature exists to encapsulate the

behaviour of the operator, and subsequently decode it for

assistance. For example, predicting the user intent can be

posed as a classification problem of reaching a particular

goal position in a predefined set of goals [15]. Alternatively,

the user may be assumed to maximize an unknown reward

function to be ascertained by inverse reinforcement learning

(IRL). Dragan and Srinivasa formulated a policy blend-

ing mechanism to combine the teleoperator intention with

the robot movement using IRL [16]. In cognitive science,

Bayesian models are more commonly used to incorporate

uncertainty in decoding the user behaviour. Hauser in [17]

inferred the type of task performed by the user with a

Bayesian Gaussian mixture auto-regression framework, and

followed the predicted trajectory with a cooperative motion

planner.

Generative models such as Hidden Markov Models

(HMMs) have been widely used to interpret human intention

as performing a discrete set of tasks/subtasks with common

low level sensory observations. The use of hierarchical repre-

sentations [18], or sets of dynamic models for the subtasks

sequenced together with a Markov chain [19], have been

investigated to describe several human behaviours. Li et al.

used virtual fixtures with an HMM to segment if the user

intends to follow a periodic motion curve, not follow the

curve or stay idle [20]. Nolin et al. in [21] investigated

settings of discrete compliance levels with an HMM, namely

{toggle, fade, hold}, to assist the user in following the

virtual fixture based on his/her demonstration. Roila et al.

presented probabilistic virtually guided fixtures for assistance

[22]. Medina et al. perform task segmentation with an HMM

and incrementally update its parameters during reproduction

to progressively increase the collaborative role of the robot

in performing the task [23]. Wang et al. infer the probability

distribution over intentions from the human observations in

the latent state of a Gaussian process dynamical model [24].

Maeda et al. recognize the phase/stage of human move-

ment from intermittent observations under different possible

speeds and plan a collaborative trajectory for the robot [25].

This paper extends our previous work on encoding manip-

ulation skills in a task-adaptive manner [4], [26], [27] to the

context of semi-autonomous teleoperation. Our major contri-

butions are the probabilistic formulations to assist the user by

correcting the robot motion with shared control, synthesizing

the motion with autonomous control, and following a desired

trajectory with virtual fixtures control.

II. SEMI-AUTONOMOUS TELEOPERATION

In this section, we first present an example to illustrate

the semi-autonomous teleoperation scenario with the Baxter

robot. We then describe our learning approach for encod-

ing the task from teleoperator demonstrations, followed by

control formulations to assist the teleoperator in performing

manipulation tasks.

A. Illustrative Example

Consider the task of grasping an object on the remote site

by teleoperation. The task is demonstrated on the teleoperator



Fig. 2: Semi-autonomous teleoperation framework: Step 1) the teleoperator provides a few demonstrations of the manipulation

task under different object positions shown in green (the points depict the end of the demonstrations); Step 2) a task-

parameterized HSMM is learned, with the input reference frame representing the demonstrations in the global coordinate

system, and the output reference frame representing the demonstrations in the coordinate system attached to the object (the

Gaussian depicted as an ellipse represents the emission distribution of a state, and the graphical representation of the HSMM

shows transition among states and the state duration modeled with a Gaussian); Step 3) (left) the teleoperator performs an

imprecise movement (in orange) to grasp the perceived object in green, (right) the shared control mode locally corrects the

movement of the robot (in blue) in accordance with the actual object position on the remote site, while the autonomous

control mode generates the movement to the object (in dark red) after the teleoperator switches to the autonomous mode

(marked with a cross). Note that the output frame component adapts the model locally in accordance with the object.

site from different initial configurations of the arm and the

object. After learning the model from a few demonstrations,

the model parameters are passed to the remote site during

the start of the mission (implemented as a ROS service).

During teleoperation, the teleoperator arm data is continu-

ously streamed to the remote site, while the remote robot arm

data and the object description (reference frames described

as task parameters) are sent back to the teleoperator side.

To simulate communication latency in teleoperation, data is

buffered on both the teleoperation and the remote sites. Fixed

time delays of up to 2 seconds are introduced, under which

the teleoperator perceives the object with delayed feedback.

The teleoperator has two modes of assistance as illustrated

in Fig. 2: 1) shared control, and 2) autonomous control.

Shared control continuously adjusts/corrects the robot move-

ment given the teleoperator arm data based on the learned

model that locally adapts according to the object position.

The model exploits the variability observed in the teleop-

erator demonstrations. Where the variance is high such as

away from the object, the correction is mild, whereas for

low variance regions close to the object, the model strongly

corrects the remote arm to track the object. Supervisory

control gives the teleoperator more autonomy as the model

detects the state of the task and generates the remote arm

movement to accomplish the task.

B. Learning Task-Parameterized HSMM

We use one arm of the Baxter robot as the input device

for the teleoperator, with a controller compensating for

the effect of gravity. Let us denote an observation of the

teleoperator arm as ξt ∈ R
D with ξt =

[

ξI
⊤

t ξO
⊤

t

]

⊤

where

ξI

t and ξO

t respectively represent the pose of the end-effector

of the teleoperator arm at time t in a global frame of

reference and the same pose observed with respect to another

frame of reference describing the current context or situation

(superscripts I and O represent the input and the output

components). The aim of augmenting the teleoperator pose

with different frames of reference is to couple the movement

of the teleoperator arm with external environmental variables,

i.e., we learn the mapping between the teleoperator pose in

two reference frames: in a global frame and in the object

frame, modeled as a joint distribution. We assume that the

reference frames are specified by the user, based on prior

knowledge about the carried out task. Typically, reference

frames will be attached to objects, tools or locations that

could be relevant in the execution of a task.

The pose of the teleoperator arm describes the position

x
p
t ∈ R

3 and the unit quaternion orientation εot ∈ S3



of the end-effector (D = 14 with 7 dimensional pose of

the input dimension and 7 dimensional pose of the output

dimension observed with respect to task parameters). We

represent the task parameters with P coordinate systems,

defined by the reference frames {Aj , bj}Pj=1, where Aj

denotes the orientation of the frame and bj represents the

origin of the frame, described by

Aj =





II
0 0

0 RO

j 0

0 0 EO

j



 , bj =





0

pO

j

0



 , (1)

where pO

j ∈R
3, RO

j ∈R
3×3, EO

j ∈R
4×4 denote the Cartesian

position, the rotation matrix and the quaternion matrix of the

j-th frame, respectively.

The observation sequence {ξt}
T
t=1 of T datapoints,

observed from the perspective of different reference

frames, forms a third order tensor dataset {ξ
(j)
t }T,P

t,j=1

with ξ
(j)
t = A−1

j (ξt − bj). This dataset is used

to train a task-parameterized HSMM with K hid-

den states represented by the parameter set θh =
{

Πi, {ai,m}Km=1, {µ
(j)
i ,Σ

(j)
i }Pj=1, µ

S
i ,Σ

S
i

}K

i=1
. Πi denotes

the initial state distribution, a ∈ R
K×K with ai,j , P (j|i)

denote the transition probability of moving from state i at

time t− 1 to state j at time t, the output distribution of

state i in frame j is described by a multivariate Gaussian

with parameters {µ
(j)
i ,Σ

(j)
i }, and the parameters {µS

i ,Σ
S
i }

represent the mean and the standard deviation of staying

s consecutive steps in state i estimated by a Gaussian

N (s|µS
i ,Σ

S
i ). The K Gaussian components for each ref-

erence frame constitute a Gaussian mixture model with a

shared transition matrix and state duration model to capture

the sequential patterns in the demonstrations. The parameters
{

Πi, {ai,m}Km=1, {µ
(j)
i ,Σ

(j)
i }Pj=1

}K

i=1
are estimated using

an expectation maximization (EM) algorithm [2] with latent

space parameter updates, while the parameters {µS
i ,Σ

S
i }

K
i=1

are estimated by fitting a duration model on each state from

the computed hidden state sequence. HSMM, in comparison

to HMM, better models movements with longer state dwell

times, see [28] for comparison with other mixture models.

C. Model Adaptation in New Situations

For a given environmental situation represented by the

reference frames {Ãj , b̃j}Pj=1, the resulting model param-

eters {µ̃i, Σ̃i} are obtained by first linearly transforming the

Gaussians in the P reference frames with

N (µ̃
(j)
i , Σ̃

(j)

i ) = N
(

Ãjµ
(j)
i + b̃j , ÃjΣ

(j)
i Ã

⊤

j

)

, (2)

and then computing the products of the linearly transformed

Gaussians for each component [29], [4] with

N (µ̃i, Σ̃i) ∝
P
∏

j=1

N (µ̃
(j)
i , Σ̃

(j)

i ), (3)

Σ̃i =





P
∑

j=1

Σ̃
(j)

i





−1

µ̃i = Σ̃i

P
∑

j=1

(

Σ̃
(j)

i

)−1 (

µ̃
(j)
i

)

.

D. Manipulation Assistance

We first present two formulations of the learned model

to assist the teleoperator in performing remote manipulation

tasks: 1) time-independent shared control, 2) time-dependent

autonomous control, and then show comparison of our ap-

proach with virtual fixtures.

1) Shared Control: In shared control, we seek to con-

tinuously correct the movement of the robot arm according

to the learned model given the streaming input data from

the teleoperator. To this end, we first approximate the con-

ditional probability distribution of the teleoperator pose in

each output reference frame component given the current

teleoperator pose as P(ξ
Oj

t |ξI

t ) ≈ N (µ̃
Oj

t , Σ̃
Oj

t ), based on

the joint distribution of the linearly transformed Gaussians

N (µ̃
(j)
i , Σ̃

(j)

i ). Denoting the block decomposition of the

joint distribution as

µ̃
(j)
i =

[

µ̃
Ij

i

µ̃
Oj

i

]

, Σ̃
(j)

i =

[

Σ̃
Ij

i Σ̃
IOj

i

Σ̃
OIj

i Σ̃
Oj

i

]

, (4)

the conditional output distribution N (µ̃
Oj

t , Σ̃
Oj

t ) is approx-

imated using Gaussian mixture regression [30],

µ̃
Oj

t =

K
∑

i=1

hi(ξ
I

t ) µ̂
Oj

i (ξI

t ), (5)

Σ̃
Oj

t =

K
∑

i=1

hi(ξ
I

t )
(

Σ̂
Oj

i +µ̂
Oj

i (ξI

t )µ̂
Oj

i (ξI

t )
⊤

)

−µ̃
Oj

t µ̃
Oj

t

⊤

,

(6)

with hi(ξ
I

t ) =
πi N (ξI

t | µ̃
Ij

i , Σ̃
Ij

i )
∑K

k πk N (ξI

t | µ̃
Ij

k , Σ̃
Ij

k )
, (7)

µ̂
Oj

i (ξI

t ) = µ̃
Oj

i + Σ̃
OIj

i Σ̃
Ij

i

−1
(ξI

t − µ̃
Ij

i ), (8)

Σ̂
Oj

i = Σ̃
Oj

i − Σ̃
OIj

i Σ̃
Ij

i

−1
Σ̃

IOj

i . (9)

The conditional probability distribution N (µ̃
Oj

t , Σ̃
Oj

t ) pre-

dicts the teleoperator pose according to the learned model,

and the uncertainty associated with the pose in the given

frame {Ãj , b̃j}. The conditional probability distributions of

all reference frames are fused using the product of Gaussians

to yield the desired pose at each time instant, N (µ̂t, Σ̂t) ∝
∏P

j=1 N (µ̃
Oj

t , Σ̃
Oj

t ) (see Eq. (II-C)). Note that the variance

of the resulting product of Gaussians determines the trade-

off between direct teleoperation and correction applied by the

model. If the variance is low, the correction is strong and the

robot arm follows the model better than the teleoperator. A

similar variance based shared control architecture has also

been adopted by authors in [31].

2) Autonomous Control: Continuously operating the re-

mote arm for routine tasks can be cumbersome for the

teleoperator, especially in the presence of communication

latency. In such a situation, the teleoperator may switch at

any point in time to to the autonomous control mode upon

which the robot arm recursively re-plans and executes the

task for the next T steps. When the task is accomplished

or the communication channel is re-established, the operator



switches back to the direct/shared control upon which the

robot arm returns to the desired teleoperated state (see [32]

for application of this approach to adaptive dressing skills).

The input part of the learned model is used to recognize

the most likely state of the task at to given the teleop-

erator pose ξI

t . The desired movement sequence is then

computed with the help of the forward variable, αHSMM

t,i ,

P (i, ξ1 . . . ξt|θh). Given the model parameters θh and the

partial observation sequence ξ1 . . . ξt, the probability of a

datapoint ξt to be in state i at time t is recursively computed

in the explicit-duration HSMM as [3]

αHSMM

t,i =

K
∑

j=1

min(smax,t−1)
∑

s=1

αHSMM

t−s,j aj,i N (s|µS
i ,Σ

S
i ) ·

t
∏

c=t−s+1

N (ξc|µ̃i, Σ̃i). (10)

The forward variable is initialized with the current state

of the task ξto using αHSMM

to,i
=

πiN (ξto
|µ̃i,Σ̃i)

∑
K
k=1

πkN (ξto
|µ̃k,Σ̃k)

, and

is subsequently used to plan the movement sequence for

the next T steps with t = (to +1) . . . T . Note that only

the transition matrix and the duration model are used to

plan the future evolution of the initial/current state ξto (the

influence of the spatial data given by the last term is omitted

as it has not been observed), i.e. N (ξt|µ̃i, Σ̃i) = 1 for

t=(to+1) . . . T . This is used to retrieve a stepwise reference

trajectory N (µ̂t, Σ̂t) from the state sequence zt computed

from the forward variable, with

zt = argmax
i

αHSMM

t,i , µ̂t = µ̃O

zt
, Σ̂t = Σ̃

O

zt
. (11)

E. Linear Quadratic Tracker/Regulator

The desired pose in the shared control mode or the step-

wise desired sequence of poses in the autonomous control

mode is respectively tracked with an infinite or a finite

horizon discrete-time linear quadratic regulator [33]. The cost

function minimized during tracking is expressed as

ct(ξ̄
I

t ,ut) =
T
∑

t=t0

(ξ̄
I

t − µ̄t)
⊤Qt(ξ̄

I

t − µ̄t) + u⊤

tRtut,

s.t. ξ̄
I

t+1 = Adξ̄
I

t +Bdut,

starting from the initial value ξ̄
I

t0
=

[

ξI

t0

⊤

0
⊤
]

⊤

, with

ξ̄
I

t =
[

ξI

t

⊤

ξI

t+1
⊤
]⊤

, µ̄t =
[

µ̂t
⊤

0
⊤
]

⊤

, Ad =

[

I ∆tI

0 I

]

and Bd=

[

1
2∆t2I

∆tI

]

. Note that the discrete form of a double

integrator system is used as a simplified analogue of the

robot arm dynamics. Setting Qt =

[

Σ̂
−1

t 0

0 0

]

� 0, Rt ≻ 0,

the control input u∗
t ∈ R

7 that minimizes the cost function is

obtained by solving the dynamic Riccati equation backwards

in time. For the infinite horizon case with T → ∞ and

the desired pose µ̂t = µ̂t0
, the control law is obtained by

eigendecomposition of the discrete algebraic Riccati equa-

tion. The resulting path ξ∗t
I

smoothly tracks the desired

pose/trajectory µ̂t and the computed gains stabilize ξI

t along

ξ∗t
I

in accordance with the precision, changing during the

task. The two arms are clutched during teleoperation, and

the remote arm is teleoperated under unilateral control mode,

i.e., no force is fed back to the teleoperator. Using a haptic

interface to feedback interaction forces on the teleoperation

site is subject to future work.

III. COMPARISON WITH VIRTUAL FIXTURES

Virtual fixtures are used to constrain the movement of

the remote arm to follow a desired trajectory [8], [9]. The

end-effector of the teleoperator arm is virtually coupled to

the desired trajectory by a spring-damper system. Like a

cart being pulled on a rail, the teleoperator arm movement

induces the motion of the remote arm along the trajectory.

The desired remote arm pose along the trajectory µ̂svm
is

specified by the phase variable svm with svm = 0 at the

beginning of the trajectory, svm = 1 at the end of the

trajectory, and ˆ̇µsvm
= Jsvm ṡvm where Jsvm ∈ R

7 is

the mapping Jacobian. The teleoperator arm movement ξI

t

induces the dynamics on the the phase variable [22] with

ṡvm =
(

J⊤

svm
BσJsvm

)−1
J⊤

svm

(

Kσ(ξ
I

t −µ̂svm
) +Bσξ̇

I

t

)

,

(12)

where Kσ and Bσ define the stiffness and damping of the

virtual fixture.

A task-parameterized HSMM can be used as a virtual

fixture by augmenting the teleoperator data with the phase

variable svm during the demonstration step. In the teleop-

eration phase, the desired remote arm pose is retrieved by

Gaussian conditioning on the phase variable (see Eq. (5))

with P(µ̂svm
|svm) ≈ N (µ̃O

t , Σ̃
O

t ) while the Jacobian Jsvm

is obtained by evaluating the analytical derivative of Eq. (5)

with respect to svm. Note that the input component here is

svm and the output component N (µ̃O

t , Σ̃
O

t ) gives the desired

pose µ̂svm
and its uncertainty, along with the Jacobian Jsvm

that governs the evolution of the phase variable in Eq. (12)

to guide the arm along the trajectory.

In virtual fixture control, the teleoperator arm movement

governs the evolution of the phase variable and Gaussian

conditioning on the phase variable gives the desired pose

of the remote arm; whereas in shared control, Gaussian

conditioning on the teleoperator arm pose gives the desired

pose of the remote arm. In our implementation of virtual

guides, more datapoints were required than in shared control

to ensure smooth evolution of the phase variable during

teleoperation. We used the logistic function for the phase

variable (instead of the linear ramp function) to slow down

the cart at the beginning and at the end of the trajectory.

The transformation of the phase variable is important to limit

injection of arbitrarily high velocities in Eq. (12).

IV. EXPERIMENTS, RESULTS AND DISCUSSIONS

In this section, we evaluate the semi-autonomous teleop-

eration approach for reaching a movable target and opening

a valve with the Baxter robot. Our experimental protocol

remains the same as in Sec. II-A. All the demonstrations



Fig. 3: Reaching a movable target (in green squares) for screw driving: (left) demonstrations and model shown in the

input reference frame; (center-left) demonstrations and model in the output reference frame; (center-right) the teleoperator

demonstration (in red) is corrected under shared control (in blue) to reach a new target location shown in green; (right) the

teleoperator switches from direct control to autonomous control mode (marked with a cross) after which the movement is

autonomously generated to the new target location.

are collected with a controller compensating for the effect

of gravity by a human operator who is familiar with the

robot, but not an expert in teleoperation. For learning, the

number of Gaussians is empirically selected for each task

based on a crude division of the task into phases such as

reaching, grasping, etc. Alternatively, a Bayesian information

criterion, or a non-parametric approach based on Dirichlet

processes could be used for model selection [34], [27].

Performance setting in all our experiments is as follows: the

mixture components are initialized as left-right HSMM using

k-means clustering. We evaluate the performance of our

approach using three different criteria: 1) task performance

error, 2) environmental differences, and 3) execution time.

A. Manipulation Tasks

1) Reaching a Movable Object: The objective of this

task is to reach a target point with a screwdriver while

adapting the movement for different target configurations.

We describe the task with a single frame {A1, b1} attached

to the target and collect 6 kinesthetic demonstrations (4 for

training and 2 for testing) with the initial pose of the target

rotated/translated in the successive demonstrations. Results

of the joint distribution with 2 mixture components for

different target poses are shown in Fig. 3. Demonstrations for

the input reference frame represent the movement of the end-

effector of the teleoperator’s arm to different target poses,

while the output reference frame maps the demonstrations

to a pose as observed from the target perspective.

2) Opening a Valve: The goal of this task is to bring the

valve in an open position from different initial configurations

of the valve [4]. The task is described by two reference

frames, one with the observed initial configuration of valve

{A1, b1} and the other with the desired end configuration of

the valve {A2, b2}. The changing configuration of the valve

is tracked using an augmented reality (AR) tag with a Kinect

2.0. We record 8 kinesthetic demonstrations (6 for training

and 2 for testing) with the initial configuration of the valve

corresponding to {180, 135, 90, 45, 157.5, 112.5, 67.5, 22.5}
degrees with the horizontal in the successive demonstrations.

Results of the learned model with 2 reference frames and 7
mixture components are shown in Fig. 4. The input compo-

nents of both reference frames represent the demonstrations

identically in global coordinates. The output components of

the reference frames depict high variability in reaching the

valve and coming back to the home position, whereas there

is no variation in grasping/turning and stopping the valve

in their respective coordinate systems. This allows the robot

arm to reach the valve from different configurations, grasp

the valve and turn it to the desired open position.

B. Performance Evaluation

1) Task Performance Error: Our objective is to assist

the teleoperator to perform remote manipulation tasks in a

repeatable and precise manner while reducing the workload

of the teleoperator. Results of the shared and autonomous

modes of assistance for target reaching task are shown in

Fig. 3. In shared control, the model corrects the movement

of the teleoperator in accordance with the output component

of the model that adapts locally to the target. If the variance

of the resulting conditional distribution is low, the correction

is stronger and vice versa. While demonstrating autonomous

control, the teleoperator tests the system by randomly switch-

ing between control modes during the task. Fig. 3 (right)

shows how the movement of the robot converges to the target

from different switching instants, while being repeatable and

more precise than the direct and the shared control results.

2) Robustness to Different Environments: Performance of

the teleoperator is typically affected by the environmental

differences between the teleoperator and the remote sites.

Such differences exist as streaming full OctoMaps over satel-

lite communication for updating the remote environment on

the teleoperator site are only possible at a very low frequency.

In Fig. 4, we compare different assistance approaches to

handle these discrepancies by setting different configurations

of the valve on the teleoperator and the remote end. We can

see that the task-parameterized model successfully adapts

to the external situation on the teleoperator and the remote

site, thereby, mitigating the difference of situations in the



Fig. 4: Open valve (in gray) from different initial configurations A
(i)
1 to final configuration A2: (top) learned model in

the input and output reference frames, and left-right HSMM with state transition and state duration model (smax = 100);

(bottom) the teleoperator performs the task (in red) with respect to the perceived valve configuration on the left, where the

different control modes assist the remote arm (in blue) to perform the task with actual valve configuration. The spring in

bottom right is used to show the virtual fixture between the teleoperator pose and the desired pose along the trajectory.

two sites. The teleoperator performs the movement according

to the perceived valve configuration or switches to the au-

tonomous mode while performing the task, and the generated

movement is adapted locally with shared, autonomous or

virtual fixture control.

Table I summarizes the results of different control modes

to mitigate imprecise teleoperator movements with our model

(see [28] for comparison with other models). For each target

or valve configuration in the training or testing set, all the

demonstrations in the training and testing sets are treated

in a given control mode and compared with the human

demonstration for that particular target. Mean-squared end-

point errors for target tracking and mean-squared trajectory

errors for valve opening tasks are averaged over all demon-

strations and for all target or valve configurations. The results

show that the autonomous control gives the most repeatable

and precise assistance among different teleoperation modes,

while modeling the data in latent space provides a compara-

ble performance with much less parameters. Moreover, we

observe high performance errors of virtual fixture control

on valve opening task as change of movement directions

in the teleoperator demonstration tends to induce remote

arm movement in the reverse direction along the trajectory,

resulting in an unsuccessful trial.

3) Execution Time: In order to evaluate the effect of

teleoperation mode on the task execution time, the human

operator performs the task 5 times for each teleoperation

mode from different initial conditions. At the end of all trials,

the operator reveals the preferred mode of assistance for each

task. Results in Table II suggest performance improvement

in task execution time using the learned model as compared

to the direct teleoperation mode. In our future work, we

plan to test the model with large communication delays over

satellite communication in challenging underwater environ-

ments. Moreover, we would like to systematically evaluate

the performance of the teleoperator in executing the task

under delayed feedback from the remote site.

V. CONCLUSION

In this paper, we have exploited a task-parameterized

HSMM to assist the teleoperator in performing remote ma-

nipulation tasks. We have presented probabilistic formula-

tions of the model to provide assistance by correcting the

robot motion with shared control, synthesizing the motion

with autonomous control, or following a desired trajectory

with virtual fixture control. Compared to synchronous direct

teleoperation, the proposed semi-autonomous teleoperation

framework locally adapts the model to handle environmental

differences and communication delays. Teleoperation exper-

iments conducted with the Baxter robot for target reaching

and valve opening tasks showed improvement in mitigating

imprecise teleoperator demonstrations and reducing the task

execution time.
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