
Online and Offline Robot Programming via
Augmented Reality Workspaces

Yong Joon Thoo, Jérémy Maceiras, Philip Abbet, Mattia Racca, Hakan Girgin, and Sylvain Calinon

Abstract— Robot programming methods for industrial robots
are time consuming and often require operators to have knowl-
edge in robotics and programming. To reduce costs associated
with reprogramming, various interfaces using augmented reality
have recently been proposed to provide users with more intuitive
means of controlling robots in real-time and programming them
without having to code. However, most solutions require the
operator to be close to the real robot’s workspace which implies
either removing it from the production line or shutting down the
whole production line due to safety hazards. We propose a novel
augmented reality interface providing the users with the ability
to model a virtual representation of a workspace which can be
saved and reused to program new tasks or adapt old ones without
having to be co-located with the real robot. Similar to previous
interfaces, the operators then have the ability to program robot
tasks or control the robot in real-time by manipulating a virtual
robot. We evaluate the intuitiveness and usability of the proposed
interface with a user study where 18 participants programmed
a robot manipulator for a disassembly task.

I. INTRODUCTION

Industrial robots play a vital role in manufacturing tasks
such as welding and assembly due to their ability to perform
these tasks with a high degree of precision and reliability.
Nevertheless, despite their importance in manufacturing, the
programming of such robots remains a costly and time-
consuming task often requiring operators to have a certain
degree of knowledge of robotics and programming [1], [2],
[3], [4], [5], [6].

The most popular methods for programming industrial
robots are referred to as online and offline. The online method
requires the use of the real physical robot and consists of
recording the path designed by an operator by controlling the
joints of the robot via a teaching pendant with a joystick, a
6D-mouse, or a keypad. The offline method on the other hand
does not require the actual robot and consists of constructing
a virtual representation of the robot and its workspace to
simulate tasks prior to applying it on the real robots [7],
[8]. Various simulators and 3D engines have recently been
extended to support robotics platforms, making the offline
programming of robots possible.

These methods present however multiple disadvantages. For
online programming, the control of a robot via a teaching

The authors are with the Idiap Research Institute, Martigny, Switzerland
(name.surname@idiap.ch).

This work was supported by the COLLABORATE project
(https://collaborate-project.eu), funded by the EU within H2020-DT-
FOF-02-2018 under grant agreement 820767, by the LEARN-REAL project
(https://learn-real.eu, CHIST-ERA), funded by the Swiss National Science
Foundation, and by the ROSALIS project, funded by the Swiss National
Science Foundation.

(a) (b)

Fig. 1: Illustration of the ability to program the robot offline
either (a) directly in the real robot’s workspace or (b) in a vir-
tual workspace by defining keypoints (displayed as transparent
end-effectors) and visualising the resulting trajectory.

pendant often requires the robot in question to be removed
from production during programming or, under certain cir-
cumstances, a shutdown of the production line [2]. In the
case of offline programming, the reconstruction of the robot’s
workspace in a virtual environment can be time consuming.
Furthermore, the transition from the simulation to the exe-
cution on the real robot may suffer from inaccuracies, with
additional costs required to overcome them [7]. Moreover,
offline methods require a certain degree of familiarity with
programming and simulators.

The significance of these disadvantages increases when
robots need to be reprogrammed frequently. This is especially
true in High-Mix Low-Volume (HMLV) manufacturing, where
small quantities of a large variety of items are produced [7].
As such, research has been conducted to design intuitive and
efficient programming interfaces for users with little to no
experience in the fields of robotics or programming [1].

To suit these needs, Augmented Reality (AR) technology
has been proposed as a solution due to its ability to su-



perimpose information in various forms onto the real world.
Indeed, AR has been growing increasingly popular in recent
years and has been used in various fields such as architecture,
construction, education, manufacturing and engineering [9]. In
the field of robotics, AR interfaces provide a new medium
for interaction with the robot and enable the exchange of
information during tasks [10] in addition to providing users
with the ability to preview a robot’s intended actions.

Several AR or Mixed Reality (MR) interfaces have been
proposed to enable users not only to control a robot [6] but also
to program it by defining trajectories and tasks via the manipu-
lation of a virtual robot in the interface [5], [8], [11], [12], [13].
These interfaces provide the operators with an intuitive way of
programming the robot without an extensive knowledge about
programming and combines some of the advantages of current
online and offline methods by enabling users to simulate a task
directly in the robot’s workspace, making the transition from
simulation to real execution easier. However, the proposed
solutions require the users to share the same workspace as
the robot such that the robot in question cannot be used for
production during the programming process.

To further reduce the time during which the robots are un-
available for production, we propose an AR interface providing
users with the ability to program the robot from a virtual
representation of the workspace which can be built and saved
by the user such that tasks can be programmed from different
locations (Fig. 1b). Adjustments to the trajectory, if necessary,
could then be made by displaying the designed task in the real
robot’s workspace (Fig. 1a) resulting in less time during which
the robot in question would be unavailable for production.

In Section II, we first present a state of the art of robot
control and programming via augmented reality. This is fol-
lowed by a description of our proposed AR interface and its
components in Section III. In Section IV, we describe the
experiments conducted to evaluate our interface. In Section V,
we present and give a brief discussion on the results of our
experiments. Finally, we conclude in Section VII with some
potential future work descriptions.

II. RELATED WORK

AR has been used in combination with robotics for various
use cases allowing users to not only interact with or control
the robot and visualise their intentions but also program the
robot by defining target points in the actual workspace that the
robot should reach. This enables inexperienced users with little
to no programming skills to design complex robot operations
and ensure that the trajectory to be taken by the real robot is
collision free [2]. Various AR interfaces displayed either via
a Head Mounted Device (HMD), smartphone, tablet or screen
have been proposed in recent years for industrial settings as
well as for collaborative tasks where the user can perform the
task alongside the operator.

In [8], [11], [12], [13], the authors present mixed reality
interfaces with a Microsoft HoloLens to program tasks by
defining waypoints directly in the robot’s workspace and
previewing the trajectory via a virtual robot before sending

(a) (b)

Fig. 2: Illustration of the methods to place a robot in the scene:
(a) manual and (b) marker calibration (here, with a picture of
Earth).

the commands to a real robot. To place the waypoints and
interact with the other features each respective interface offers,
the interfaces employ features available on the HoloLens,
namely gesture recognition as well as speech recognition and
head pose in some cases [11]. The main drawbacks of such
interfaces are that the selection and dragging features in the
HoloLens may not always be reliable due to imperfect hand
tracking [13] such that the trajectory may not be optimal and
it may be difficult to perform tasks that demand a high degree
of precision. To overcome this issue, in [8], the authors present
an interface providing users with the ability to scale the path
for a more accurate planning during such tasks, as well as
the selection of the method by which the trajectory between
waypoints should be interpolated (line, arc, etc.). However,
despite allowing users to be hands-free, the HoloLens may be
less intuitive than a 2D interface for novice users and HMDs
are not necessarily available to most users. Additionally, it
has been reported that such devices may cause discomfort and
sickness which may be affecting their industrial acceptance
[14].

In recent years, various platforms and toolkits such as
ARCore, ARToolKit and Mixed Reality Toolkit (MRTK) have
been introduced allowing users to develop augmented or mixed
reality applications for certain smartphones and tablets making
the technology more accessible. Such toolkits have been used
to develop interfaces enabling users to perform pick-and-place
tasks in collaboration with a robot [14], define waypoints
on a 2D surface for a tool to pass through [5] as well as
control the joints of the robot via the interface, and visualise



Fig. 3: Communication diagram of the application.

a trajectory demonstrated to the robot via kinesthetic teaching
[4]. However, in the case of [14], [5], the interfaces do not
provide a visualisation of the whole robot which may be
important if the operator needs to check for eventual collisions.
Whilst this is not the case with the interface presented in
[4], the teaching mode presented in the interface involves
demonstrating a task to the robot such that the robot is
backdrivable through a gravity compensation controller, which
is not available to most industrial robots.

In addition to some of the drawbacks mentioned above,
most of the interfaces presented in this section require the
operators to employ the interface whilst being next to the
robot’s workspace where the operators can interact directly
with the physical objects present in the environment. Due to
safety issues, similar to teaching a robot a task via a pendant,
this would require shutting down the robots in the production
line. Table I provides a summary of traditional and state of the
art interfaces for programming industrial robots, along with
their advantages and drawbacks.

In this paper, we propose an AR interface available on
smartphone and tablet providing users with the ability to not
only control and program a robot in its workspace but also
model the workspace via virtual objects. This provides the
advantage of being able to use the interface to program robot
tasks from different locations and adapt previously saved tasks
to new situations, environments, tools, or robots.

III. METHODOLOGY

The interface proposed in this work was developed with
Google’s ARCore software library on Android Studio such
that it can run on most AR compatible Android devices2. The
main functionality of the interface is that it provides non-expert
users with an offline programming solution by means of a
virtual robot in a simulation environment, as well as an online

1https://new.abb.com/products/robotics/robotstudio
2https://developers.google.com/ar/devices

programming solution by controlling the real robot with the
provided AR tools.

The virtual robot can be placed at a desired location within
the environment and can then be connected to the real one,
if required, to visualise what has been programmed offline or
to directly control the robot online. We implemented several
mechanisms to control the robot to achieve tasks in end-
effector space. Additionally, the interface provides various
options for the user to add/modify objects and obstacles,
which can be moved, rotated and scaled in the workspace of
the robot. The workspace created virtually can also be saved
for later programming without requiring the real robot to be
operated at the same time.

Videos of the AR interface and the experiments described
in Section IV are available at: https://sites.google.com/view/
idiap-ar-robot-interface/

A. Simulation of the robot via ARCore

We first describe the procedure to create a virtual robot
in the desired workspace and how the connection to the real
robot is established and calibrated. Upon launch, ARCore
detects planes which allow the users to interact with the
virtual objects placed in the environment. The virtual robot
is spawned following the same procedure adopted by the
Kinematics and Dynamics Library3 (KDL). Description in
the Unified Robot Description Format (URDF) informs the
creation of the kinematic chains representing the real robot.

While in this work we focus on the Franka Emika manipu-
lator, our interface can readily handle any robot as long as a
URDF file and related meshes are available. The technological
feasibility of adding robots to the interface should however be
considered in the larger scope of usability, as characteristics of
specific robotic platforms may not mesh well with the design
of our interface.

1) Positioning the virtual robot in the workspace: The
interface exposes two methods to place the virtual robot in
the AR workspace: a manual method and a marker calibration
method. The manual method lets the user select a location on
a plane detected by ARCore upon which to place the virtual
robot (as shown in Fig. 2a). Once linked to the detected plane,
the robot’s orientation and position can then be further adjusted
with the blue and red translation axes and the green rotation
ring, as shown in Fig. 2a.

The marker calibration method exploits ARCore’s Aug-
mented Images APIs4 to superimpose the virtual robot onto
the real robot as illustrated in Fig. 2b. It first detects the pose
of a previously placed calibration marker in the workspace
with respect to the ARCore coordinate system. Using a given
homogeneous transformation between the calibration marker
and the coordinate system at the base of the robot, the virtual
robot is accordingly placed in the ARCore’s interface.

2) Communication with the real robot: The virtual robot
is connected to the real robot via Robot Operating System5

3https://www.orocos.org/kdl.html
4https://developers.google.com/ar/develop/java/augmented-images
5https://www.ros.org/



TABLE I: Comparison table of traditional and state of the art interfaces for industrial robot programming.

Description Advantages Disadvantages

Teach pendant
interfaces

Direct control via a joystick or 6D
mouse for point-to-point or block-based
programming on the fly, e.g.,
Kuka SmartPAD, Franka Emika Desk.

+ No need to model the environment, as the
robot directly operates on it

+ Familiar interface by being the industry stan-
dard

− Little to no integration with external sensors
− Requires co-presence of the user with the

robot or additional visualisation interface if
remote teleoperation is employed

− No inspection for safety of the motion prior
to execution

− Brand specific tool

Visualisation tools
and physics
simulators

Visualisation tools, e.g. RViz and
simulators e.g., PyBullet, CoppeliaSim,
MuJoCo, Gazebo.

+ Online & offline programming options are
available

+ Visualisation of robot model, robot pro-
grams, and additional sensor data

+ Not bound to a specific robot platform

− Need to model the environment for offline
programming

− Transferring the planned motions requires
accurate simulation of the robot, its sensors,
and the environment (sim-to-real gap)

− Selection of motion keypoints in the soft-
ware requires accurate simulation of the
environment (real-to-sim gap)

ABB RobotStudio1 Simulator that generates code for ABB
robots.

+ Monitoring of robot models, work cells and
routines, either on desktop (via simulated
environment) or with AR enabled devices

− Depth perception issues linked to AR
− Programming only via the desktop interface
− Offline programming requires complete

modelling of the environment
− Requires accurate simulation of the environ-

ment (real-to-sim gap)
− Brand specific tool

Headset AR/MR
enabled solutions

Headset AR/MR enabled devices
[8], [11], [12], [13].

+ Visualisation of robot model, robot programs
and sensor data (ROS enabled for [8], [13])

+ Multimodal input/output (speech, visual,
tactile)

+ Offline programming and safety checks for
online programming do not require environ-
ment modeling

+ Hands-free
+ Not bound to a specific robot platform

− Depth perception issues linked to AR
− Offline programming provides a visualisa-

tion of the virtual robot in the real scene
but no other elements of the environment

− Reported cases of discomfort and sickness

Mobile device
AR enabled
solutions

Mobile AR enabled devices (e.g., tablet,
smartphone, . . .) [4], [5], [14].

+ Online & offline programming options are
available

+ Visualisation of robot model, robot pro-
grams, and additional sensor data

+ Multimodal input/output (speech, visual,
tactile)

+ Offline programming and safety checks for
online programming do not require environ-
ment modeling

+ Not bound to a specific robot platform

− Depth perception issues linked to AR
− Tactile screen can lead to inaccurate motions
− Offline programming provides a visualisa-

tion of the virtual robot in the real scene
but no other elements of the environment

Proposed solution

Interface displayed via a mobile AR
enabled device where users can
visualise a virtual robot and
additional elements of the environment.
Tasks can be programmed
either directly in the real workspace or
in a virtual workspace.

+ Online & offline programming options are
available

+ Visualisation of robot model, robot pro-
grams, and sensor data (ROS enabled)

+ Offline programming and safety checks for
online programming do not require environ-
ment modeling

+ Intuitive selection of the keypoints in the in-
terface mitigates the real-to-sim gap problem

+ Not bound to a specific robot platform

− Depth perception issues linked to AR
− Tactile screen can lead to inaccurate motions

(ROS) which allows interactions between the real and virtual
robots. As ROS is already available for most of the available
industrial and collaborative robots, it provides a generic in-
terface, enabling additionally the use of multiple sources of
sensory information together for the robot to work with. Our
interface thus allows the ARCore device to communicate with
the server via ROS, as illustrated in Fig. 3-left. The robot
is controlled via ROS through a server enabling its real-time
communication with the robot motors using the robot’s API
provided by the manufacturer of the robot, as illustrated in
Fig. 3-right. As the implementation of our interface is built on
top of ROS and not on a specific robot’s API, the proposed

interface is robot agnostic.

B. Motion control

We present here the methods available to control the robot’s
joints and end-effector as well as to plan trajectories.

As opposed to joystick or teaching pendant based method-
ologies of programming robots, we provide more diverse
options to control and program the robot. Users are able to
reposition the robot’s end-effector using the translation axes
shown in Fig. 4a and orient it using the rotational rings, each
describing the rotation around the translation axes, as shown
in Fig. 4b. These changes in the task space are applied to the



(a) (b) (c) (d)

Fig. 4: Fully virtual workspace with objects and obstacles (in red) and the various ways of controlling a robot: (a) control
of the end-effector position, (b) control of the end-effector orientation, (c) control of the end-effector along a plane and (d)
control of the elbow.

joint space through a weighted inverse kinematics algorithm.
Internally, a joint impedance controller was used to reach new
joint space targets.

The third option enables the user to move the end-effector
constrained on a 2D plane defined by the device’s orientation,
as seen in Fig. 4c. This option provides a more intuitive way
to interact with the robot from the perspective of the user who
may also be moving. The final option is the direct control of
the joints that are highlighted in the interface such as the elbow
joint, as illustrated in Fig. 4d. The application also provides the
user with the tools to create, save, edit, load and replay end-
effector trajectories on the device. To define a trajectory, the
user can place keypoints in the workspace by controlling the
robot via the techniques described above. Fig. 5a shows four
of these workspace keypoints, depicted by partially transparent
robot grippers.

These locations are then sequentially connected by an
iterative Linear Quadratic Regulator (iLQR) [15] used as a
trajectory planner, which determines the corresponding joint
trajectory from the task space locations. From this trajectory,
an equivalent task space trajectory is computed and depicted
with a yellow curve as in Fig. 5a. This trajectory and its
illustration in the interface are then updated upon the addition,
removal or edition of a keypoint.

Additionally, the interface provides the operator with the
ability to specify the precision required around each keypoint
by replacing them with multivariate Gaussian distributions
represented by ellipsoids in the scene (Fig. 5b). The mean
of each Gaussian distribution represents the location of the

corresponding keypoint, whereas the covariance represents
the allowed variance along each principal axis. This view of
Gaussian distributions can be exploited within optimal control
strategies such as iLQR to define a quadratic cost with the
precision matrix being the inverse of the covariance matrix
[16]. This enables the user to directly influence the precision
matrices of the trajectory planner by rotating and modifying
the scale of each ellipsoid (described in the following section).

As all of these techniques can be performed on the virtual
robot or by directly controlling the real robot, the proposed
interface is compatible for online and offline programming.

C. Simulation of virtual objects and workspaces

In offline programming, the user employs a simulator to
visualise and control a virtual robot, defining its motions
to achieve a task. Industrial robotics tasks are often defined
by the workspace where the robot is located and by the
objects and tools that it can interact with. To this end, we
propose to simulate, via the AR interface, workspaces with all
their objects/tools available, without requiring the control or
presence of the real robot.

This provides operators with the ability to design trajectories
in a virtual workspace without the need to occupy the real
workspace (see Fig. 6b). During the testing phase, adjustments,
if required, can be performed directly in the real robot’s
workspace by first using the marker calibration method to
superimpose the virtual robot onto the real. Furthermore, the
virtual workspace and the defined trajectories can also be
loaded. Users can therefore edit the trajectory’s keypoints (and



(a) (b)

Fig. 5: Trajectory planning with (a) keypoints illustrated by
transparent end-effectors and (b) Gaussians (green ellipsoids)
where their scale represents the (co)variations allowed along
each axis, which are then converted to full precision matrices
within the iLQR optimal control technique employed for
planning.

thus the trajectory itself), by selecting them and manipulating
their pose with the same handles described in Section III-B.

The interface also allows users to place virtual objects
and obstacles (see Fig. 4) in the shape of cuboids, spheres
and cylinders of modifiable sizes. The difference between the
obstacles (in red in Fig. 4) and the objects (in black in Fig. 4)
is that the former are defined for the user to plan a collision-
free trajectory of the robot. This means that whereas the robot
can apply actions on the objects using the physics engine of
the interface, we preferred to exclude these interactions on
the obstacles to facilitate the programming. Note that here the
collision-free trajectory is defined by the user interaction on
the interface and the implementation of an obstacle avoidance
planner is left as future work.

These objects and obstacles can be moved using the same
methods, described in the previous section, to control the
robot’s end-effector. Their scale along each axis can be modi-
fied using a similar representation to the one used to translate
the end-effector. The creation of such objects and obstacles
helps the user to create a virtual workspace that matches at
best to the real one (see Fig. 6a) and use it as a template such
as in Fig. 6b. Trajectories can then also be planned in this
virtual workspace (Fig. 5a) using the functionalities described
in the previous section and all the virtual components within
the scene (i.e., workspace, objects, obstacles and trajectories)
can be saved in a file on the device so that they can be

(a) (b)

Fig. 6: (a) definition of an obstacle by scaling and positioning
a red virtual box to encompass an object; (b) virtual represen-
tation of the workspace used for the offline condition.

reused/adapted for future tasks.

IV. EXPERIMENTS

To evaluate the intuitiveness of the proposed interface and
the programming of a robot purely within a smartphone-
based AR setup, we conducted a study, with 18 participants,
consisting of the programming of a peg disassembly task. This
study was approved by Idiap Research Institute’s Data and Re-
search Ethics Committee. Our comparison intentionally leaves
out traditional “mouse, keyboard, and screen” interfaces, as
AR approaches have been already compared against such
interfaces in [13], [17], showing promising results in terms
of speed, accuracy, naturalness of use, and required effort .

1) Experimental Setup: The participants programmed a 7-
axis Franka Emika robot manipulator, for a peg disassembly
task of the National Institute of Standards and Technology
(NIST) task board 1 [18], see Fig. 7. As AR interface, we used
an Android smartphone (6.39-inch touchscreen display with a
resolution of 1080×2340 pixels). The participants of our study
(age range 20–35) had varying knowledge of robotics systems
but little to no experience of virtual, augmented and mixed
reality.

2) Conditions and Protocol: The participants were asked to
perform the disassembly of a cylindrical peg from the NIST
task board and place it into a disposal box, as shown in Fig.
7. Two conditions were tested in the study: the online and the
offline programming of the disassembly task.

In the online condition, the participants directly controlled
the real robot’s motions from the AR interface and their inputs
were immediately translated into robot motions. Prior to the



task, the virtual robot was aligned with the real one based
on the marker calibration method described in Section III and
the interface was connected to the robot as illustrated in Fig.
2b. Furthermore, the real and virtual robots were first set to a
default joint configuration after which participants could then
start the experiment by displacing the virtual end-effector via
the options described in Section III-B. The task was considered
successfully completed when the peg was correctly disposed
inside of the box. A failure was recorded when the peg was
either incorrectly disposed, dropped or an action performed by
the user resulted in the robot’s safety stop.

In the offline condition, participants instead controlled, via
the AR interface, a virtual robot acting on a pre-stored virtual
copy of the workspace of the online condition. In particular,
the participants first placed the virtual workspace on a table
different from the one of the real robot (see Fig. 6b) and
programmed the disassembly of the same cylindrical peg
from the board and its placement into a yellow box. The
participants were given 5 minutes of time to define a robot
trajectory by means of via-points, as shown in Fig. 5a. The
robot trajectory was then sent to the real robot and enacted
on the real workspace. If the peg was correctly disposed,
the task was considered as successfully completed. In case
of failure, the participants were given one extra minute to per-
form adjustments to the programmed trajectory in the virtual
workspace, according to the visual feedback they observed
from the real robot. This decision was made to provide a
fair comparison with respect to the online condition where
participants experienced real-time feedback while controlling
the robot.

We adopted a within-subjects study design, with each par-
ticipant operating the robot in both the online and the offline
conditions. The order of the conditions was counterbalanced.

Prior to the experiment, the participants were provided with
instructions and were given 1-2 minute to familiarise with the
AR interface and the disassembly task.

3) Questionnaire and Logged Data: For each condition,
we recorded whether the participants were successful in
completing the task. Furthermore, the completion time tc of
the disassembly task was recorded (i.e., seconds between the
beginning of the task and its success/failure). At the end of
the experiment, each participant filled a questionnaire with the
following 6 Likert scale statements (1 – completely disagree,
5 – completely agree):

1) The interface is easy to understand,
2) I found the visualisation of the virtual robot useful,
3) I found it easy to control the robot in real time,
4) I found it easy to plan trajectories with the virtual robot,
5) I found the AR interface useful to program the robot,
6) I would use the AR interface for robot programming.

Each statement included an optional comment section where
participants could provide feedback about their experience and
provide suggestions on what could be improved.

Fig. 7: Experimental setup with Franka Emika robot, NIST
board, calibration marker and disposal box.

V. RESULTS

We hereafter present the analysis of the different metrics
collected during the study. When relevant, the data is presented
and the analysis is performed by separating the participants
into two groups, with the 9 participants who experienced the
online condition first and then the offline condition assigned
to group A. The other 9 participants who experienced the
conditions in the reverse order were assigned to group B.

We first computed the success rate of each group for each
experiment as summarised in Table II. Our hypothesis entering
the study was that the success rate in the offline condition for
the participants in group A (that first operated the real-robot in
the online condition) should be higher with respect to what ob-
served for group B. The hypothesis was motivated by the fact
that participants from group A have a better understanding of
the application and the setup when performing this experiment
compared to those of group B. Although we observed a 11%
difference in success rate, no statistically significant difference
was found (test on the Agresti-Coull interval, p > .05).

TABLE II: Success rate on the disassembly task, reported
separately by groups and conditions.

Online condition Offline condition Pop. size
Group A 100% 78% 9
Group B 100% 67% 9
Overall 100% 72% 18



(a) (b) (c)

Fig. 8: Boxplots of the completion time tc acquired during the successful experiments for (a) entire population, (b) group A
and (c) group B.

For the completion time tc, the descriptive statistics are
presented in Fig. 8 as boxplots. We tested the data for nor-
mality with the Shapiro-Wilk test, rejecting the null hypothesis
(p < .05). For each subset, we therefore ran a non-parametric
Wilcoxon signed-rank test for differences between conditions.
Statistically significant differences were found, both for the
overall population (p < .01), as well as for groups A and B
(p < .05).

As expected, we notice a reduction in the time taken to
program the task online with respect to the offline method,
as well as a higher success rate. Based on user feedback, we
believe this to be mainly due to the lack of sensory feedback
in the virtual environment: the participants had an hard time
determining when the centre of the gripper was aligned with
the peg that was to be disassembled and when the peg was
above the disposal box.

A. User feedback

The scores of the Likert scale statements presented in
Section IV-3 are visualised in Fig. 9 for the whole study
population. As for the completion time tc, we looked for
differences of questionnaire scores between the two groups
with a Mann-Whitney U test, finding however no statistically
significant differences (p > .05).

Overall, the results indicate that the participants perceived
the proposed AR interface as easy to understand and useful
for robot programming. However, out of the 18 participants,

Fig. 9: Average user ratings for the assertions provided in
Section IV-3.

only 7 participants stated that they would use the inter-
face for programming industrial robots. While praising the
easiness and quickness of use of the interface, the rest of
the participants raised concerns about the interface’s lack of
accuracy, especially for manufacturing tasks such as insertion.
Most participants mentioned how it was difficult to perform
precise robot motions by means of the dragging motion on the
smartphone screen.

On the other hand, almost all participants stated that the
virtual workspace provides a good representation of the real
workspace and that the interface offers an intuitive way of
planning trajectories as errors can easily be visualised and
corrected.

VI. DISCUSSION

The results presented in Section V indicate a promising
success rate for both online and offline programming with
completion times tc ranging from 1 to 4 minutes. Neverthe-
less, during the study we observed how certain aspects of the
interface could have hindered the participants in accomplishing
the task.

A general problem of AR interfaces is their weakness in
the estimation and visualisation of depth [19]; a limitation
that requires the users to adopt coping strategies such as e.g.,
change their location to obtain different views of the scene and,
consequently, a better perception of depth. In our study, we
indeed observed how the participants who adopted such coping
strategies performed the disassembly tasks faster and more
accurately than their counterparts. This was especially true
for the offline condition, where the issue of the AR interface
with depth was particularly relevant.

Another issue indicated by the study’s participants was
in the perceived lack of accuracy during dragging motions
across the screen. This led to inaccurate or unexpected motions
on the real robot, especially when the translation axis being
manipulated was perpendicular to the surface of the device,
leading to substantial changes in robot pose for negligible
amounts of input on the screen. A solution to this issue
would be to automatically disable the control of the robot
along the axis being employed when the aforementioned
condition is met. While avoiding the problem of unexpected
and potentially dangerous robot motions, this solution would



also encourage the users to move around the workspace, in
order to regain control of a certain axis, indirectly addressing
the aforementioned issue of depth perception.

Furthermore, the user feedback also provided insights into
various potential areas of research such as using the interface
to control the real robot remotely, in a similar fashion to
remote teleoperation. Additionally, some participants stated
that they would consider using the AR interface not only as
a control tool but also as a visualisation/monitoring tool. As
our interface is ROS-enabled, readings from a multitude of
sensors could be visualized in our interface as easily as in
other visualization software, like e.g., RViz.

Finally, in a Learning from Demonstration scenario [1],
[20], the presented interface could be used to inspect the
quality of the demonstrated trajectories or to visualise their
variability with aptly placed Gaussians, as shown in [4].

VII. CONCLUSION & FUTURE WORK

We presented an augmented reality interface for smart-
phones and/or tablets, enabling users to control a robot in real-
time, to program it offline as well as to model a workspace
by means of virtual objects. The proposed interface aims
to provide operators programming industrial robots with an
alternative to common online programming methodologies,
for which the presence of a real robot is not required and
pre-stored workspaces and trajectories can be adapted to re-
program a robot.

Future work will address the challenge of performing more
accurate motions. We will investigate the option of adapting
the sensitivity of the dragging action on the interface, giving
the required precision to the user when felt necessary. Also,
we will test the option of switching from the use of dragging
motions to a button based system where users can affect the
displacement along each axis individually. This would enable
users to perform rapid actions via the current dragging motions
on the screen and then switch to the button based system when
more accuracy is required. Such solutions would therefore
enable users to tailor the interface to their preferences and
provide users who are less experienced with augmented reality
with alternative options to control the robot.

Furthermore, as reported by a number of participants, the
size and the tactile nature of the device’s screen may have a
major impact on a user’s capacity to program, especially when
the task at hand requires the user a careful inspection of the
environment. Future work will explore this design space of
our interface and its impact on the interface’s usability.

Finally, the ARCore software development kit currently
lacks the ability to detect 3D objects. Having such a feature
would allow to automatically place virtual objects or obstacles,
resulting in a faster creation of the virtual workspace. We plan
to integrate a 3D object detection pipeline in the interface to
provide this capability. Motivated by the promising results and
the participants’ feedback presented in Sections V and VI, we
also plan to investigate possible extensions of the approach to
other robot applications beyond manufacturing.

REFERENCES

[1] S. Calinon, ”Learning from Demonstration (Programming by Demon-
stration),” Ang, M.H., Khatib, O. and Siciliano, B. (eds), Encyclopedia
of Robotics, Springer, 2018.

[2] F. Zhang, C.Y. Lai, M. Simic and S. Ding, ”Augmented reality in robot
programming,” Procedia Computer Science, vol. 176, pp. 1221-1230,
2020.

[3] S. Blankemeyer, R. Wiemann, L. Posniak, C. Pregizer and A. Raatz, ”In-
tuitive Robot Programming Using Augmented Reality,” Procedia CIRP,
vol. 76, pp. 155-160, 2018.

[4] M. Gradmann, E. M. Orendt, E. Schmidt, S. Schweizer and D. Henrich,
”Augmented Reality Robot Operation Interface with Google Tango,” Intl
Symposium on Robotics (ISR), 2018, pp. 1-8.

[5] S. M. Chacko, A. Granado, V. Kapila, ”An Augmented Reality Frame-
work for Robotic Tool-path Teaching,” Procedia CIRP, vol. 93, pp. 1218-
1223, 2020.

[6] S. M. Abbas, S. Hassan and J. Yun, ”Augmented reality based teaching
pendant for industrial robot,” Intl Conf. on Control, Automation and
Systems, 2012, pp. 2210-2213.

[7] S.K. Ong, A.W.W. Yew, N.K. Thanigaivel, A.Y.C. Nee, ”Augmented
reality-assisted robot programming system for industrial applications,”
Robotics and Computer-Integrated Manufacturing, vol. 61, 2020.

[8] M. Ostanin, S. Mikhel, A. Evlampiev, V. Skvortsova and A. Klimchik,
”Human-robot interaction for robotic manipulator programming in Mixed
Reality,” IEEE Intl Conf. on Robotics and Automation (ICRA), 2020, pp.
2805-2811.

[9] H.-L. Chi, S.-C. Kang, X. Wang, ”Research trends and opportunities of
augmented reality applications in architecture, engineering, and construc-
tion,” Automation in Construction, vol. 33, 2013, pp. 116-122.

[10] Z. Makhataeva and H. Varol, ”Augmented Reality for Robotics: A
Review”, Robotics, vol. 9, no. 2, p. 21, 2020.

[11] C. P. Quintero, S. Li, M. K. Pan, W. P. Chan, H. F. Machiel Van der Loos
and E. Croft, ”Robot Programming Through Augmented Trajectories
in Augmented Reality,” IEEE/RSJ Intl Conf. on Intelligent Robots and
Systems (IROS), 2018, pp. 1838-1844.

[12] M. Ostanin, A. Klimchik, ”Interactive Robot Programming Using Mixed
Reality,” IFAC-PapersOnLine, vol. 51, issue 22, 2018, pp. 50-55.

[13] S. Y. Gadre, E. Rosen, G. Chien, E. Phillips, S. Tellex and G. Konidaris,
”End-User Robot Programming Using Mixed Reality,” Intl Conf. on
Robotics and Automation (ICRA), 2019, pp. 2707-2713.

[14] S. M. Chacko and V. Kapila, ”Augmented Reality as a Medium for
Human-Robot Collaborative Tasks,” IEEE Intl Conf. on Robot and Human
Interactive Communication (RO-MAN), 2019, pp. 1-8.

[15] W. Li and E. Todorov, ”Iterative Linear Quadratic Regulator Design for
Nonlinear Biological Movement Systems,” Intl Conf. on Informatics in
Control, Automation and Robotics (ICINCO), 2004, pp. 222-228.

[16] T.S. Lembono and S. Calinon, ”Probabilistic Iterative LQR for Short
Time Horizon MPC,” In Proc. IEEE/RSJ Intl Conf. on Intelligent Robots
and Systems (IROS), 2021.

[17] S. Arroyave-Tobón, G. Osorio-Gómez, J. F. Cardona-McCormick, ”AIR-
MODELLING: A tool for gesture-based solid modelling in context during
early design stages in AR environments,” Computers in Industry, vol. 66,
2015, pp. 73-81,

[18] K. Kimble, K. Van Wyk, J. Falco, E. Messina, Y. Sun, M. Shibata, W.
Uemura, and Y. Yokokohji, ”Benchmarking protocols for evaluating small
parts robotic assembly systems,” IEEE Robotics and Automation Letters,
vol. 5, no. 2, pp. 883–889, 2020.

[19] F. E. Jamiy and R. Marsh, ”Distance Estimation In Virtual Reality And
Augmented Reality: A Survey,” IEEE Intl Conf. on Electro Information
Technology (EIT), 2019, pp. 63-68.

[20] B. D. Argall, S. Chernova, M. Veloso, B. Browning, ”A survey of robot
learning from demonstration,” Robotics and Autonomous Systems, vol.
57, issue 5, 2009, pp. 469-483.


