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Abstract— Programming by Demonstration (PbD) offers a
user-friendly way to transfer skills from human to robot.
Typically, demonstration data do not contain the control
inputs required to reproduce the demonstrated skill. These
can be obtained from a low-level controller that tracks the
modeled movement. We present a PbD approach for minimal
intervention control — a control strategy that only corrects
perturbations that interfere with task performance. The novelty
of our approach is the probabilistic encoding of the movement
duration, providing a performance measure that enables mini-
mal intervention control in a temporal sense. This is achieved by
combining a probabilistic movement encoding based on Hidden
Semi-Markov Model (HSMM) with Model Predictive Control
(MPC). The probabilistic model is used to construct an objective
function, hereby assuming that variance is a measure for task
performance. The proposed method is demonstrated in a robot
experiment and compared with our earlier work.

I. INTRODUCTION

Fulfilling the prospect of robots, leaving factory floors to
enter the human world and act among us, could lie decades
away. However, the transition of robots from large scale
factory plants, as can be found in the car manufacturing
industry, towards smaller manufacturers might lie around the
corner.

Programming by Demonstration (PbD) is a learning tech-
nique that could accelerate this transition [1]. It provides
a user-friendly programming solution that allows users to
program a task by showing a number of successful task
executions. The technique is ideal for small manufactures,
that are characterized by shorter production life cycles, since
PbD allows fast (re)programming and does not require expert
programmers.

One of the challenges in PbD is to find a suitable way to
model and reproduce the demonstrated skill. There are two
common ways to represent a demonstrated skill: autonomous
and non-autonomous.

Autonomous representations model a movement as a dy-
namical system; encoding a time-independent relation be-
tween the dynamical features of the movement (e.g. position,
velocity and acceleration). Such systems form an attractor
landscape in which the goal state is a global minimum.
Reproduction of the encoded skill is achieved by following
the steepest descent of the attractor landscape [2], [3].
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Fig. 1: 1D example of the proposed approach. Position x and
velocity ẋ (gray) — obtained by demonstration — are encoded in
three Gaussian kernels (colored rectangles: The center line indicates
mean, outer lines indicate one standard deviation). The colored lines
visualize the position and velocity profiles of the reproduction.
The bottom left graph shows the control signal u that is used
to obtain the reproduction. It is obtained by solving an optimal
control problem. The required cost function is based on a state
sequence that is synthesized using the state transition and duration
information of a HSMM (right). The colors of the control signal u,
position x and velocity ẋ, correspond to the colors of the activated
kernels.

Non-autonomous movement representations encode an ex-
plicit dependency between a temporal signal and the dynami-
cal features of the movement. The retrieval of the movement
from the model is driven by this temporal signal that can
represent time directly, or indirectly using a decay term (see
e.g. [4]–[6]). We call these systems non-autonomous since
the system evolution depends on a variable that is not part
of the system state.

Because autonomous systems are not driven by a temporal
signal, they provide an intrinsic robustness to perturbations
that distort the temporal evolution of the system state. When
the robot encounters an obstacle, the interaction force will
remain constant since the action of the robot only depends on
the system state (which remains constant). Non-autonomous
systems would generate undesirable interaction forces in
such situations due to the evolution of the temporal signal.
In contrast, temporal dependency can be beneficial when the
temporal features are part of the task performance; e.g. tasks
that require synchronization with automated systems.

Reproduction of the movement on a robot requires a low-
level controller with an adaptive control strategy. We follow
the minimal intervention principle for the controller design.
This principle states that “Deviations from the average
trajectory are only corrected when they interfere with task
performance” [7]. This results in a strategy that trades off



control effort and task performance.
The combination of probabilistic movement models with

optimal control provides a promising way to learn minimal
intervention controllers from demonstration [8], [9]. These
approaches assume that the required task performance can
be related to the covariance encoded in the probabilistic
model; large variance in the dynamical features indicates
that accurate tracking is not required and vice versa. These
methods, however, do not consider variability in the total
movement duration. Hence, the control strategy does not
follow a minimal intervention strategy in a temporal sense.

We propose a PbD approach for minimal intervention
control that considers both spatial and temporal variabil-
ity. Similarly to spatial task performance, we assume that
accuracy required to perform a task can be extracted from
variability apparent among demonstrations. Tasks with strict
temporal requirements will show low temporal variability,
whereas tasks without these requirements will show higher
variability. We want to exploit this information to create a
non-autonomous movement representation that allows mod-
ification of its temporal behavior depending on the task
requirements.

Similarly to our previous work [8], the reproduction of
the encoded task will be based on a minimal intervention
controller that is learned from demonstration. The novelties
of this work are three-fold: (i) instead of solving the optimal
control problem for the complete duration of the task, we
follow a Model Predictive Control (MPC) approach where
the control commands are recomputed at each time step for
a receding horizon; (ii) we show that a minimal interven-
tion controller can be obtained from a Gaussian Mixture
Model (GMM) by replacing the smooth reference, generated
by time-based regression, with a piecewise reference only
consisting of the Gaussian centers and covariances; (iii) we
show that we can obtain a controller with variable temporal
behavior by encoding the movement in a Hidden Semi-
Markov Model (HSMM), and use this model to synthesize
the control objective online.

This paper is structured as follows: In Section II, we
describe the components of the proposed method. A com-
parison with a time driven method is given in Section III.
Section IV shows an application of the Task-Parameterized
HSMM (TP-HSMM) in a robotic experiment using a Barrett
WAM. Discussion and future work is presented in Sections
V and VI, respectively.

II. METHOD

We distinguish two phases in the approach: the demonstra-
tion phase and the reproduction phase. During the demon-
stration phase, the robot is provided with N demonstrations
of the skill. Each demonstration consists of Tn datapoints
ξt = [x>t , ẋ

>
t ]
> where n ∈ {1, · · · , N}, and ·> indicates the

matrix transpose. Unlike other non-autonomous movement
encoding, we do not consider an explicit temporal signal.
We only assume that the data are sampled with a regular
time interval ∆t. After demonstration, the obtained data are
encoded in an HSMM (II-A).

Reproduction of the encoded skill is achieved online. At
each time-step a control command is obtained by solving
an optimal control problem (II-B). The required objective
function is constructed based on the information encoded in
the HSMM as desecribed in Sections II-C and II-D.

A. Hidden Semi-Markov Model (HSMM)

The demonstrated data are encoded in an HSMM [10],
[11], an extension of the Hidden Markov Model (HMM) in
which the state1 duration is explicitly modeled as a probabil-
ity distribution. An HMM models a double stochastic process
of which the observations are assumed to be generated
by an underlying, unobservable, finite-state Markov chain.
We represent each state by a single multivariate Gaussian
N (µi,Σi), with

µi =

[
µx

i

µẋ
i

]
, Σi =

[
Σxx

i Σxẋ
i

Σẋx
i Σẋẋ

i

]
, (1)

modeling the local linear dynamics.
Variable duration modeling techniques, such as the

HSMM, replace the self-transition probabilities ai,i of the
HMM by an explicit model (non-parametric or parametric)
of the relative time during which one stays in each state, see
for example [11], [12]. Here, the duration will be modeled
by a univariate Gaussian distribution N (µDi ,Σ

D
i ).

The HSMM with K states is defined by the parameters
{ai,j ,Πi, µ

D
i ,Σ

D
i ,µi,Σi}Ki,j , were Πi are the initial state

priors. These parameters are estimated using an Expectation
Maximization (EM) algorithm [11], [13]. Various techniques
exist to determine the number of states K, e.g. Bayesian
information criterion [14], or Dirichlet processes [15].

B. Linear Unconstrained MPC

A Model Predictive Control (MPC) strategy is used to
obtain a minimal intervention controller. MPC computes
control commands based on system state predictions. This
allows the controller to anticipate future events. MPC can be
applied to a wide variety of systems, both linear and non-
linear, with constraints on both input and output [16]. We
use its simplest form: linear unconstrained MPC.2

The state predictions used in MPC are based on an
estimate of the system model. We use a discrete linear system
to describe the dynamic behavior of the system state

ξt+1 = Aξt +But, xt = Cξt, (2)

with A, B and C the system dynamics, input and output
matrix, respectively. Based on this linear system, Np state
predictions ξr, with r ∈ {t + 1, · · · , t + Np}, are defined
in terms of the current state ξt, and Nc control commands

1Throughout this paper we explicitly distinguish state, to refer to the
state of the HSMM, and system state, to refer to the state ξ of a dynamical
system.

2Linear unconstrained MPC yields the same solution as finite horizon
Linear Quadratic Regulator (LQR). In this work we refer to MPC rather
than LQR to emphasize that control problem is solved at each time-step
with a receding horizon.



ur with r ∈ {t, · · · , t + Nc − 1}. The state predictions are
compactly written in a matrix-vector form

ζ=


A

A2

A3

...

ANp


︸ ︷︷ ︸
Sξ

ξt+


B 0 · · · 0
AB B · · · 0

A2B AB · · · 0
...

...
. . . 0

ANp−1B ANp−2B · · · ANp−NcB


︸ ︷︷ ︸

Su


ut

ut+1

ut+2

...
ut+Nc−1


︸ ︷︷ ︸

U

,

(3)

X =
(
INp ⊗C

) (
Sξξt + SuU

)
, (4)

where ζ = [ξ>t+1, ξ
>
t+2, · · · , ξ

>
t+Np

]>, X =
[x>t+1,x

>
t+2, · · · ,x>t+Np

]>, ⊗ is the Kronecker product
and INp is an Np ×Np identity matrix.

The control command ut is found by minimizing an
objective function that defines the cost over the prediction
horizon. We define a quadratic cost function

J =

t+Np∑
r=t+1

(
ξ̂r−ξr

)>
Qr

(
ξ̂r−ξr

)
+

t+Nc−1∑
r=t

u>rRr ur, (5)

with ξt and ξ̂t representing the current and desired system
state, respectively. The tracking cost Qt influences the stiff-
ness of the controller in the different elements of the system
state. High tracking cost results in stiff control of the state
variables. Rt is the control cost matrix. The control law that
minimizes the cost J over time is optimal with respect to this
objective. Rewriting the objective function in batch form, we
obtain

J =
(
ζ̂ − ζ

)>
Q
(
ζ̂ − ζ

)
+U>RU , (6)

with Q = blockdiag(Qt+1,Qt+2, ... ,Qt+Np
) and R =

blockdiag(Rt,Rt+2, ... ,Rt+Nc−1).
The vector of control commands U is obtained by substi-

tuting (3) into (6) and minimizing with respect to U , yielding

U =
(
Su
>
QSu +R

)−1
Su
>
Q
(
ζ̂ − Sξξt

)
. (7)

The computational cost of solving (7) heavily depends
on the size of the inversion. This size can be reduced by
selecting a control horizon Nc < Np. An alternative, com-
putationally more efficient, iterative solution for solving (5)
subject to (2) exists. The presented batch solution, however,
allows us to include, if required, additional constraints on
both input and output forming a convex optimization problem
[16].

C. State Sequence Synthesis

The construction of the objective function used in our
approach is based on a state sequence s =

{
s1, ... , sNp

}
,

with Np the number of predictions, that is regenerated at
each time step of the reproduction.

The generation process relies on the forward variable of
the HSMM. The forward variable αi,t defines the proba-
bility to be in state i at time step t given the observation

{ξ1, ξ2, ... , ξt}; i.e. P(i|ξ1, ξ2, ... , ξt). It can be recursively
computed with (see for example [13])

αi,t =ΠiNDt,i
t∏

r=1

Nr,i +

K∑
j=1

t−1∑
d=1

αj,t−d aj,iNDd,i
t∏

r=t−d+1

Nr,i, (8)

when t is smaller than the time history dmax, otherwise

αi,t =

dmax∑
d=1

K∑
j=1

αj,t−d aj,i NDd,i
t∏

r=t−d+1

Nr,i, (9)

with Nr,i = N
(
ξr| µi,Σi

)
and NDd,i = N (d|µDi ,ΣDi ).

At each time step the forward variable is used for
two purposes. First, to keep track of the probability
P(i|ξ1, ξ2, ... , ξt). Here, αi,t is computed while taking into
account the current system state ξt. This process is initialized
with the priors, i.e. αi,0 = Πi. Second, Np predictions are
computed to create the state sequence prediction s with

sr = arg max
i∈{1,··· ,K}

αi,r, ∀ r ∈ {t+ 1, t+ 2, · · · , t+Np}. (10)

When computing the predictions, we assume equal obser-
vation probability for all states, i.e. Nr,i = 1 ∀i.

The combination of observed system state, through Nr,i,
and state duration, through NDd,i, enables the movement re-
production with variable duration. The observations influence
the probability of the system to be in a certain state, and can
alter the movement through the state sequence evolution. The
movement is slowed down by observations preventing state
transition; i.e. observations that are likely in the current or
previous states. It is sped up by observations that encourage
state transition; i.e. observations that are more likely to occur
in the future states. The influence that observations have
in the state evolution is regulated by NDd,i, specifying the
mean and variance of the state duration. If the duration
variance is small, the influence of the observations will
diminish, removing temporal variability. If it is large, the
state evolution will be governed by the observations.

D. Setting the Objective

The control behavior is shaped by ξ̂r, Qr and Rr. To
create a minimial intervention controller, we assume that
low-variability in the demonstration data indicates an area
where accuracy is required, and high variability indicates an
area where less accuracy is required similarly to our previous
work [8].

In this work, however, we do not encode the joint
probability density function P(ξ, t). Instead, we use an
HSMM encoding P(ξ) in combination with a duration model
that replaces the explicit temporal signal. The reference ζ̂,
previously obtained through Gaussian Mixture Regression
(GMR), is replaced by a trajectory based on the state
sequence s = {s1, ... , sNp

} that is synthesized as described
in Section II-C. The result is a piecewise reference consisting
of the centers and covariance of the Gaussian kernels, i.e.

ξ̂r = µsr , Qr = (Σsr )−1. (11)
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Fig. 2: Visualization of the effect of the regularization parameter β.
Left: Three different β values are selected on the curve visualizing
the trade-off between reproduction accuracy ||WU − v|| and
control effort ||U ||. Right: The colored dots indicate the different
reproductions for different values of β, and the gray ellipsoids
represent one standard deviation of the Gaussian kernels encoding
the local movement dynamics. As β decreases the smoothness of
the motion increases, but the tracking accuracy decreases.

Figure 1 provides a 1D-example of the reproduction using
the piecewise reference. The optimization, performed by
MPC, smooths the piecewise reference by creating a trade-
off between the desired position and velocity defined in the
system state ξ̂r. The weights of this trade-off are defined
by the precision matrices Qr encoding the full covariance
between the system state variables.

The optimization requires a minimal number of state-
predictions for the generation of smooth trajectories. These
are obtained through state sequences s that cover multiple
states. Too short state sequences, i.e. shorter than the duration
of a single state, will lead to jumps between local minima
created by each state. We empirically found that using twice
the average state duration, Np > 2

K

∑K
i=1 µ

D
i , results in

proper reproductions.
Equation (7), is the solution to a regularized least-squares

problem known as Tikhonov regularization or ridge regres-
sion [17]. This can be seen by reformulating the mini-
mization (6) subject to (3) into the regularized least-squares
objective

min
U

(
||LSu︸ ︷︷ ︸

W

U −L(ζ − Sξξt)︸ ︷︷ ︸
v

||22 + β||Û ||22
)
, (12)

where L is obtained through the Cholesky decomposition
Q = L>L, and we have assumed Rr = β2ID.
β controls the trade-off between model accuracy ||WU−

v||22 and large values of U . This trade-off generally has a
sharp L-like shape [18], where β can be estimated as the
first point with significant slope change. Figure 2 shows the
relation between the L-curve and the resulting least-squares
solution. This insight can be used to select the control cost.

E. Task-Parameterized Extension

In [8], we introduced a Task-Parameterized GMM
(TP-GMM). This type of encoding enables generalization of
the movement to situations with new task parameters.

Instead of encoding the demonstration data directly, it
is first projected into P local frames of reference using

linear transformations defined by the task parameters b(p)

and A(p).3 The extended dataset is clustered into a HSMM
with K states N (µ

(p)
i ,Σ

(p)
i ) in P coordinate systems.

During reproduction the states are projected from their
local frames into the global frame of reference using the
current task parameters. There the P states i are combined
into one using the product of Gaussian ∀i ∈ 1, ... ,K. The
resulting K states are used to evaluate the forward variable
(8), and to construct the objective function (6) as described
in Sections II-C and II-D, respectively. This process is
repeated at each time step to allow for online changing task
parameters.

III. COMPARISON EXPERIMENT

Figure 3 shows reproductions of a minimal intervention
controller using three different cost functions. In tGMM, the
cost function is based on a GMM with explicit time encoding
as described in [8]. It is compared to two HSMM approaches
that are distinguished by online and offline synthesis of the
piecewise reference.

Figure 3a shows the reproductions in the unperturbed case.
All reproductions lie within the area of the demonstrated
trajectories, and their control inputs have the same order of
magnitude. This was achieved by setting the cost factor β to
0.001 and 0.007 for tGMM and the HSMM reproductions,
respectively. These settings provide a proper baseline to
compare the methods in case of perturbations.

The mismatch between online and offline HSMM is due
to the observation probabilities, these cause a difference
between the online and offline generated state sequence.

Figure 3b shows the reproductions of the systems under
perturbation. The systems are perturbed by fixing the its state
ξ over the time interval [0.4, 0.6]. This is visualized on the
temporal plots in the upper right corner of the figure.

There is a clear difference between the online and offline
HSMM. The online HSMM is able to spatially reproduce
the encoded motion, but requires more time for the repro-
duction. The offline method reaches the final state within
the demonstrated time window, but is not able to match the
demonstration spatially. Offline and online state sequence
synthesis is the same when the duration model has a variance
that approaches zero for all states. The difference between
these two reproductions demonstrates the potential of HSMM
to encode different responses to temporal perturbation.

The time-based GMM is able to reproduce the encoded
motion with spatial and temporal accuracy. There is, how-
ever, a clear difference in magnitude of the control com-
mands (shown in the bottom right plot of Figure 3). The time-
based GMM shows much higher interaction forces compared
to HSMM-based reproductions.

IV. ROBOT EXPERIMENT

The proposed method is evaluated in an object picking
scenario. The objective is to teach the robot to pick up an

3A(p) is used to comply with the original notation used in TP-GMM,
it should not be confused with the system dynamics A that is defined in
Section II-B.



(a) Unperturbed reproductions

(b) Perturbed reproductions

Fig. 3: Reproduction attempts of a minimal intervention con-
troller based on three different strategies; (i) time-based GMM
(tGMM), (ii) piecewise reference based on pre-determined state
sequence (offline-HSMM), (iii) piecewise reference synthesized on-
line (online-HSMM). The colored ellipsoids represent one standard
deviation of the Gaussian kernels encoding the local movement
dynamics. Their colors correspond to the model (blue: tGMM, red
and yellow: HSMM). See Section III for details.

object from different locations. This scenario allows us to
demonstrate the capabilities of the proposed method, namely
the ability to encode movements, to react to changes in
the environment, and to respond to spatial and temporal
perturbations.

The experiment is performed using a Barrett WAM, a
torque controlled robot with 4 degrees of freedom. We
exclude the grasping problem from the task by using adhesive
surfaces to pick up objects. The object is placed on a marker
which is tracked by an OptiTrack system.

The experiment consists of a demonstration phase and a
reproduction phase. During the demonstration phase kines-
thetic teaching is used to show the robot how to move from a
start position towards the object, and back. Demonstrations
are given for different locations of the marker. During the
demonstration the marker is not moved.

We use the TP-HSMM to handle the varying position of
the object. We pre-define two frames of reference in this
experiment (P = 2). The task parameters {b(1),A(1)} and
{b(2),A(2)} represent the origin of the WAM and the marker,
respectively. The orientation of the marker is set to A(2) = I
in this experiment.

During the demonstrations the positions of the end-effector
and the marker are recorded with a sampling frequency

of 100 Hz. Each demonstration results in a dataset Xn ∈
R2D×P×Tn , a tensor representing the Cartesian (D = 3)
position x and velocity ẋ of the end-effector in the WAM and
the marker frame for Tn time steps. The velocity is obtained
by a first-order Euler approximation (ẋt = xt−xt−1

∆t ).
During reproduction the robot is torque controlled. The

torque command

τ = τ g + J>(q)u (13)

consists of gravity compensation term τ g , and the MPC
control command u. The control command is transformed
to joint space using the Jacobian J(q) that depends on the
joint angles q.

The linear MPC model of the end-effector is defined by

A =

[
0 I3

0 0

]
B =

[
0
I3

]
. (14)

These settings assume an end-effector with unit mass, and
neglects the friction and the inertia of the robot. The predic-
tion horizon is set to Np = 100 and the control horizon is
set to Nc = 30. The MPC reproduction loop runs at 100Hz.

A. Results

Six demonstrations of the skill are given for different
locations of the object (see Figure 4a).

The demonstration data are used to train a TP-HSMM with
K = 6 states (empirically set) using EM. The parameters of
the HSMM that encode the local dynamics (µi and Σi) are
initialized by dividing the data of each demonstration into K
equal parts and calculating their corresponding means and
covariances. The transition was initialized with parameters
corresponding to a left-right model.

The resulting TP-HSMM after EM is displayed in Figure
4. The duration model shows that the initial and the final state
have the largest variance. This is caused by the inconsistent
starting and stopping while recording demonstrations. The
movement towards and away from the marker shows a
smaller variance. The duration of the pick-up phase, the
purple state #4, is relatively long. Here the demonstrator
pushes the object to make sure that it adheres to the end-
effector. The covariances of the Gaussians in the different
frames of reference show that the desired position at the start
and end position are governed by the WAM frame, while the
pick-up location is governed by the location of the marker.

Three reproduction conditions were considered to show
that the proposed approach can cope with temporal distur-
bance; (i) Unperturbed: the robot executes the movement
without external perturbations; (ii) Hold back: the movement
is slowed down by holding the robot; (iii) Pushed: the
movement is sped up by moving the robot above the motion’s
nominal speed.

The results of the reproductions are displayed in Figures
5 and 6. Figure 5 shows that the system state ξ does not
always converge to the centers of the Gaussians. Instead, the
system state converges to the trade-off between position and
velocity. The weight of this trade-off is given by the inverse
of the covariance. The control input in Figure 5 also shows



(a) Demonstrations (b) Duration Model (c) Model: WAM Frame (d) Model: Marker Frame

Fig. 4: Visualization of the encoded TP-HSMM. (a) The experimental setup and the provided demonstrations. (b) States transition model
with their corresponding duration. (c) and (d) display the demonstration data (in gray), and the location of the Gaussian kernels in the
two frames of reference. The colored ellipsoids represent the Gaussian kernels. Their colors correspond to the states of the HSMM. The
arrow that originates from the center of a Gaussian indicates the mean of the encoded velocity.

Fig. 5: The position x3, velocity ẋ3, and control input u3 over time obtained during the reproduction of the pick up task under three
different conditions. The different rows correspond, top to bottom, to the unperturbed, holding, and pushing conditions. The blocks in the
position and velocity graphs indicate the most likely state at each time step. The control input has been colored to emphasize the most
likely state at each time step. The colors in the graph correspond to the Gaussians in Figure 4b.

how much resistance the robot gave against the different
perturbations.

Figure 7 shows how the robot is able to adapt its motion
to a changing pick-up position. Initially the robot moves
towards the object positioned at the far right. When moving
the object, the robot continuously adapts its movement plan,
and is able to successfully pick up the object.

V. DISCUSSION

Besides the added temporal variability, the proposed ap-
proach offers a number of advantages for PbD over existing
non-autonomous methods such as DMP [5], DS-GMR [8]
and ProMP [4]. It adds generality since the Markov chain
structure of HSMM allows to encode both cyclic and non-
cyclic behavior. In addition, the lack of the explicit temporal
signal reduces the need for temporal realignment, and al-
lows learning from partial demonstrations without additional
modifications.

A difficulty we encountered with the proposed model
is scarcity of the data available to estimate the duration
model of the HSMM. Given that each transition, for discrete
movements, is only visited once per demonstration, each
demonstration represents only one datapoint to train the
duration model. As a result, outliers have a large effect on
the variance and the mean of the duration. This can be toned
down by introducing a prior in the form of a minimum
variation. The encoding of position and velocity does not
suffer from this drawback because each demonstration pro-
vides several datapoints to estimate them.

The proposed method has links with trajectory GMM, a
method used in speech synthesis [19], [20], [12]. Similarly to
our approach, dynamical features are approximated by local
linear models. Synthesis of a trajectory X is achieved by
maximizing the likelihood of the dynamics ζ = [ξ>1, ... , ξ

>
T ]>

given a state sequence s. Trajectory GMM enforces a smooth
trajectory using the constraint ζ = ΦX . Here, Φ defines
the relation between the trajectory X and its dynamical



Fig. 6: Visualization of the state duration for reproductions under
three different conditions. Each bar indicates the number of obser-
vations made in that state for the corresponding reproduction. The
state of an observation is given by i = argmax

i∈1,...,K
(αi,t).

Fig. 7: Visualization of the ability to adapt to changing object
location online. The figure shows how the predicted path changes
when the object is moved. The decrease in transparency indicates
the motion of the object over time.

features ζ. Instead, we use the dynamical system (2) as
a constraint to ensure this smoothness. The use of the
dynamical system constraint allows us to directly compute
the control commands U , and introduce a cost on control
effort yielding a minimal intervention controller.

VI. CONCLUSION & FUTURE WORK

We presented a PbD approach to learn a minimal in-
tervention controller. The novelty of our approach is the
application of the minimal intervention principle to the
movement duration. Here we have assumed that we can relate
the task performance in terms of duration to the temporal
variation observed during demonstration.

The implementation of the controller is based on the com-
bination of MPC with an HSMM encoding the demonstrated
skill. We have demonstrated that MPC properly smooths the
piecewise objective function generated from HSMM. This,
combined with the online synthesis of the reference, creates
an interactive controller that responds adequately to both
spatial and temporal perturbations.

We compared the reproduction results of our approach
with an approach that does not take temporal variability into
account. The simulation showed that our approach is able to
respond to perturbations with lower interaction forces, and,

depending on the duration model, favors either temporal or
spatial task performance. Finally, we have demonstrated our
method in a robotic experiment, showing the ability to adapt
to changes in the task online.

The MPC formulation used in this work allows us to
include additional (convex) constraints on both input and
output. We plan to exploit such constraints in future work to
improve safety in human-robot interaction.

The current implementation controls the robot in task
space. In future work, we plan to extend our method in such
a way that task objectives are defined in task space while
considering the controller in joint space.
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