Jankowski, J., Girgin, H. and Calinon, S. (2021)
Probabilistic Adaptive Control for Robust Behavior Imitation
IEEE Robotics and Automation Letters (RA-L).

Abstract

In the context of learning from demonstration (LfD), trajectory policy representations such as probabilistic movement primitives (ProMPs) allow for a rich modeling of demonstrated skills. In order to reproduce a learned skill with a real robot, a feedback controller is required to cope with perturbations and to react to dynamic changes in the environment. In this paper, we propose a generalized probabilistic control approach that merges the probabilistic modeling of the demonstrated movements and the feedback control action for reproducing the demonstrated behavior. We show that our controller can be easily employed, outperforming both original controller and controller with constant feedback gains. Furthermore, we show that the proposed approach is able to solve dynamically changing tasks by modeling the demonstrated behavior as Gaussian mixtures and by introducing context variables. We demonstrate the capability of the approach with experiments in simulation and by teaching a 7-axis Franka Emika Panda robot to drop a ball into a moving box with only few demonstrations.

Bibtex reference

@article{Jankowski21RAL,
	author="Jankowski, J. and Girgin, H. and Calinon, S.",
	title="Probabilistic Adaptive Control for Robust Behavior Imitation",
	year="2021",
	journal="{IEEE} Robotics and Automation Letters ({RA-L})",
	pages=""
}

Video

Related publication: Jankowski, J., Girgin, H. and Calinon, S. (2021). Probabilistic Adaptive Control for Robust Behavior Imitation. IEEE Robotics and Automation Letters (RA-L).

Go back to the list of publications